Toelatingsnummer 10211 N

Sumicidin Super  

 

10211 N

 

 

 

 

 

 

 

 

HET COLLEGE VOOR DE TOELATING VAN

GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

1 UITBREIDING TOELATING

 

Gelet op de aanvraag d.d. 20 juni 2007 (20070616 UG) van

 

SUMITOMO CHEMICAL AGRO EUROPE S.A.

2 RUE CLAUDE CHAPPE,

69370 SAINT DIDIER AU MONT, D'OR

FRANKRIJK

 

tot uitbreiding van de gebruiksdoeleinden van de toelating als bedoeld in artikel 28, eerste lid, Wet gewasbeschermingsmiddelen en biociden voor het gewasbeschermingsmiddel, op basis van de werkzame stof esfenvaleraat

 

Sumicidin Super

 

gelet op artikel 23, eerste lid, Wet gewasbeschermingsmiddelen en biociden,

 

BESLUIT HET COLLEGE als volgt:

 

1.1  Uitbreiding

1.      Het gebruiksgebied van het middel Sumicidin Super wordt met ingang van datum dezes  uitgebreid met de toepassing om zaai- en plantuien en sjalotten. Voor de gronden waarop dit besluit berust wordt verwezen naar bijlage II bij dit besluit.

2.      De toelating geldt tot 31 juli 2011.

 

1.2  Samenstelling, vorm en verpakking

De toelating geldt uitsluitend voor het middel in de samenstelling, vorm en de verpakking als waarvoor de toelating is verleend.

 

1.3  Gebruik

Het middel mag slechts worden gebruikt met inachtneming van hetgeen in bijlage I onder A bij dit besluit is voorgeschreven.


 

1.4 Classificatie en etikettering

 

Gelet op artikel 29, eerste lid, sub d, Wet gewasbeschermingsmiddelen en biociden,

 

De aanduidingen, welke ingevolge artikel 36 van de Wet milieugevaarlijke stoffen en artikelen 14, 15a, 15b, 15c en 15e van de Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten op de verpakking moeten worden vermeld, worden hierbij vastgesteld als volgt:

 

aard van het preparaat: vloeistof

 

werkzame stof:

gehalte:

esfenvaleraat

25 g/l

 

 

op verpakkingen die (mede)  bestemd zijn voor huishoudelijk gebruik: het kca-logo

(het kca-logo is het logo voor klein chemisch afval bestaande uit een afvalbak met een kruis erdoor als opgenomen in bijlage III bij de genoemde Nadere regels)         

 

letterlijk en zonder enige aanvulling:

 

andere zeer giftige, giftige, bijtende of schadelijke stof: xyleen

 

gevaarsymbool:

aanduiding:

Xn

Schadelijk

N

Milieugevaarlijk

 

Waarschuwingszinnen: 

Ontvlambaar.

Schadelijk bij inademing en opname door de mond.

Gevaar voor ernstig oogletsel.

Kan overgevoeligheid veroorzaken bij contact met de huid.

Zeer vergiftig voor in het water levende organismen; kan in het aquatisch milieu op lange termijn schadelijke effecten veroorzaken.

Schadelijk: kan longschade veroorzaken na verslikken.

 

Veiligheidsaanbevelingen:

Was alle beschermende kleding na gebruik.

Niet roken tijdens gebruik.

Bij aanraking met de ogen onmiddellijk met overvloedig water afspoelen en deskundig medisch advies inwinnen.

Draag geschikte beschermende kleding, handschoenen en een beschermingsmiddel voor het gezicht.

Draag een geschikte adembescherming bij de binnentoepassing.

Deze stof en de verpakking als gevaarlijk afval afvoeren. (Deze zin hoeft niet te worden vermeld op het etiket indien u deelneemt aan het verpakkingenconvenant, en op het etiket het STORL-vignet voert, en ingevolge dit convenant de toepasselijke zin uit de volgende verwijderingszinnen op het etiket vermeldt:

1)      Deze verpakking is bedrijfsafval, mits deze is schoongespoeld, zoals wettelijk is voorgeschreven.

2)      Deze verpakking is bedrijfsafval, nadat deze volledig is geleegd.

3)      Deze verpakking dient nadat deze volledig is geleegd te worden ingeleverd bij een KCA-depot. Informeer bij uw gemeente.)

Voorkom lozing in het milieu. Vraag om speciale instructies / veiligheidsgegevenskaart.

Bij inslikken niet het braken opwekken, direct een arts raadplegen en de verpakking of het etiket tonen.

 

Specifieke vermeldingen:

Volg de gebruiksaanwijzing om gevaar voor mens en milieu te voorkomen.

 

Behalve de onder 1. bedoelde en de overige bij de Wet Milieugevaarlijke Stoffen en Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten voorge­schreven aanduidingen en vermeldingen moeten op de verpakking voorkomen:

 

§         letterlijk en zonder enige aanvulling:
het wettelijk gebruiksvoorschrift
De tekst van het wettelijk gebruiksvoorschrift is opgenomen in Bijlage I, onder A.

 

§         hetzij letterlijk, hetzij naar zakelijke inhoud:
de gebruiksaanwijzing
De tekst van de gebruiksaanwijzing is opgenomen in Bijlage I, onder B.
De tekst mag worden aangevuld met technische aanwijzingen voor een goede bestrijding mits deze niet met die tekst in strijd zijn
.

 

·         bij het toelatingsnummer een cirkel met daarin de aanduiding W.16.

 

2 DETAILS VAN DE AANVRAAG

 

2.1 Aanvraag

Het betreft een aanvraag tot uitbreiding van het gebruiksgebied van het middel Sumicidin Super (10211 N), een middel op basis van de werkzame stof esfenvaleraat. Het middel is bij besluit van 17 maart 2003 (herregistratie) toegelaten tot 31 juli 2011. Met onderliggende aanvraag wordt toelating als insectenbestrijdingsmiddel voor toepassing in zaai- en plantuien en sjalotten gevraagd.

 

2.2 Informatie met betrekking tot de stof

De bestaande werkzame stof esfenvaleraat is per 1 augustus 2001 op Annex 1 van Gewasbeschermingsrichtlijn 91/414/EEG geplaatst (2000/67/EC d.d. 23 oktober 2000).

 

2.3 Karakterisering van het middel

Esfenvaleraat is een insecticide dat behoort tot de groep van de synthetische pyrethroiden. Deze stoffen werken als zenuwgif en verstoren het ionentransport in de membranen. De zenuwen blijven continu geprikkeld, wat acute verlammingsverschijnselen tot gevolg heeft, waardoor de insecten zich niet meer kunnen voeden.

 

2.4 Voorgeschiedenis

De aanvraag is op 5 juli 2007 ontvangen; op 27 juni 2007 zijn de verschuldigde aanvraagkosten ontvangen. Bij brief d.d. 3 oktober 2007 is de aanvraag in behandeling genomen.

 

3  RISICOBEOORDELINGEN

 

Het gebruikte toetsingskader voor de beoordeling van deze aanvraag is weergegeven in de RGB (Hoofdstuk 2), te weten beoordelingskader HTB 1.0.

 


3.1  Fysische en chemische eigenschappen

De aard en de hoeveelheid van de werkzame stoffen en de in toxicologisch en ecotoxicologisch opzicht belangrijke onzuiverheden in de werkzame stof en de hulpstoffen zijn bepaald. De identiteit van het middel is vastgesteld. De fysische en chemische eigenschappen van het middel zijn vastgesteld en voor juist gebruik en adequate opslag van het middel aanvaardbaar geacht (artikel 28, eerste lid, sub c en e, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van de evaluatie van het middel en de stof staat beschreven in Hoofdstuk 2, Physical and Chemical Properties, in Bijlage II bij dit besluit.

 

3.2  Analysemethoden

De geleverde analysemethoden voldoen aan de vereisten. De residuen die het gevolg zijn van geoorloofd gebruik die in toxicologisch opzicht of vanuit milieu oogpunt van belang zijn, kunnen worden bepaald met algemeen gebruikte passende methoden (artikel 28, eerste lid, sub d, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van de evaluatie van de analysemethoden staat beschreven in Hoofdstuk 3, Methods of Analysis, in Bijlage II bij dit besluit.

 

3.3  Risico voor de mens

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, geen directe of indirecte schadelijke uitwerking heeft op de gezondheid van de mens. De voorlopige vastgestelde maximum residugehalten op landbouwproducten zijn aanvaardbaar (artikel 28, eerste lid, sub b, onderdeel 4 en sub f, Wet gewasbeschermingsmiddelen en biociden).
Het profiel humane toxicologie inclusief de beoordeling van het risico voor de toepasser staat beschreven in Hoofdstuk 4 Mammalian Toxicology, in Bijlage II bij dit besluit.

Het residuprofiel, de vastgestelde maximum residugehalten en de beoordeling van het risico voor de volksgezondheid staan beschreven in Hoofdstuk 5, Residues in bijlage II behorende bij dit besluit.

 

3.4  Risico voor het milieu

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, geen voor het milieu onaanvaardbaar effect heeft, waarbij in het bijzonder rekening wordt gehouden met de volgende aspecten:

-          de plaats waar het middel in het milieu terechtkomt en wordt verspreid, met name voor wat betreft besmetting van het water, waaronder drinkwater en grondwater,

-          de gevolgen voor niet-doelsoorten.

(artikel 28, eerste lid, sub b, onderdeel 4 en 5, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van het risico voor het milieu staat beschreven in Hoofdstuk 6, Environmental Fate and Behaviour, en Hoofdstuk 7, Ecotoxicology, in Bijlage II bij dit besluit.

 

3.5  Werkzaamheid

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, voldoende werkzaam is en geen onaanvaardbare uitwerking heeft op planten of plantaardige producten (artikel 28, eerste lid, sub b, onderdelen 1 en 2, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van het aspect werkzaamheid staat beschreven in Hoofdstuk 8, Efficacy, in Bijlage II bij dit besluit.


 

3.6  Eindconclusie

Bij gebruik volgens het gewijzigde Wettelijk Gebruiksvoorschrift/Gebruiksaanwijzing is de uitbreiding voor de gevraagde doeleinden van het middel Sumicidin Super op basis van de werkzame stof esfenvaleraat voldoende werkzaam en heeft het geen schadelijke uitwerking op de gezondheid van de mens en het milieu (artikel 28, eerste lid, Wet gewasbeschermingsmiddelen en biociden).

 

 

 

Degene wiens belang rechtstreeks bij dit besluit is betrokken kan gelet op artikel 119, eerste lid, Wet gewasbeschermingsmiddelen en biociden en artikel 7:1, eerste lid, van de Algemene wet bestuursrecht, binnen zes weken na de dag waarop dit besluit bekend is gemaakt een bezwaarschrift indienen bij: het College voor de toelating van gewasbeschermingsmiddelen en biociden (Ctgb), Postbus 217, 6700 AE WAGENINGEN. Het Ctgb heeft niet de mogelijkheid van het elektronisch indienen van een bezwaarschrift opengesteld.

 

 

Wageningen, 3 juli 2009

 

 

HET COLLEGE VOOR DE TOELATING VAN  GEWASBESCHERMINGSMIDDELEN EN  BIOCIDEN,





dr. D. K. J. Tommel

voorzitter

 

 



HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE I bij het besluit d.d. 3 juli 2009 tot uitbreiding van de toelating van het middel Sumicidin Super, toelatingnummer 10211 N

 

 

A.

WETTELIJK GEBRUIKSVOORSCHRIFT

 

Toegestaan is uitsluitend het gebruik als insectenbestrijdingsmiddel in de teelt van:

a)      granen

b)      aardappelen, suiker- en voederbieten, erwten, stamslabonen, veldbonen, spruitkool, sluitkool, bloemkool, broccoli, koolrabi, zaai- en plantuien en sjalotten met dien verstande dat op percelen die grenzen aan watergangen, gebruik gemaakt dient te worden van een dop uit de driftreductieklasse van minimaal 75%.

c)      graszaad en graszoden alsmede in weiland en sportvelden met dien verstande dat:

1.      in de grasteelt binnen 2 weken na behandeling geen gras mag worden gemaaid ten behoeve van voederdoeleinden;

2.      weiland niet binnen 2 weken na behandeling mag worden beweid;

3.      sportvelden niet binnen 5 dagen na behandeling mogen worden betreden.

d)      bloembollen met dien verstande dat bij toepassing op percelen die grenzen aan watergangen gebruik dient gemaakt te worden van een dop uit de driftreductieklasse van minimaal 50% in combinatie met luchtondersteuning of van een dop uit de driftreductieklasse van minimaal 90% zonder luchtondersteuning of er dient gebruik gemaakt te worden van een overkapte beddenspuit.

e)      bloemisterijgewassen onder glas.

 

De toepassing door middel van een luchtvaartuig is verboden.

 

Het middel is gevaarlijk voor niet-doelwit arthropoden. Vermijd onnodige blootstelling.

 

Gevaarlijk voor bijen en hommels. Voorkom dat bijen en andere bestuivende insecten de kas binnenkomen door alle openingen met insectengaas af te sluiten.

 

Dit middel is uitsluitend bestemd voor professioneel gebruik.

 

Veiligheidstermijnen:

De termijn tussen de laatste toepassing en de oogst mag niet korter zijn dan:

7 dagen voor aardappelen, spruitkool, bloemkool,  broccoli, erwten en veldbonen;

10 dagen voor sluitkool, koolrabi en stamslabonen;

14 dagen voor uien en sjalotten;

28 dagen voor granen.

 

B.

GEBRUIKSAANWIJZING

 

Algemeen

Het middel is giftig voor vissen en andere waterorganismen. Vermijd dat het middel in het oppervlaktewater terecht kan komen.


 

Toepassingen

 

Granen, ter bestrijding van bladluizen.

Een bespuiting uitvoeren als tenminste 70% van de halmen met bladluizen is bezet.

Een gecombineerde bestrijding van bladluizen en afrijpingsziekten is verantwoord wanneer bij begin tenminste 30% van de halmen met bladluizen is bezet.

Dosering: 0,2 liter per ha.

 

Aardappelen, ter bestrijding van de larven van de Coloradokever. Toepassen zodra aantasting wordt waargenomen en wanneer jonge larven op het gewas worden aangetroffen. Indien nodig de toepassing herhalen.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Aardappelen, ter bestrijding van bladluizen ter voorkoming van zuigschade. Toepassen zodra aantasting wordt waargenomen. Een behandeling uitvoeren wanneer gemiddeld meer dan 50 bladluizen per samengesteld blad voorkomen.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Pootaardappelen, ter voorkoming van overdracht door bladluizen van het bladrolvirus.

Toepassen zodra 90% van de planten is opgekomen.

De behandeling 14 dagen later herhalen, indien nodig de behandeling elke 14 dagen herhalen tot een maximum van 5 toepassingen.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Pootaardappelen, ter voorkoming van overdracht door bladluizen van het YN-virus.

Wekelijks toepassen vanaf de opkomst van het gewas tot één week voor de rooidatum.

Dosering: 0,2 liter per ha in combinatie met minerale olie.
Het middel uitsluitend toepassen in combinatie met minerale olie. Voor de dosering van de minerale olie raadplege men voorlichtingspublicaties.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Suiker- en voederbieten, ter bestrijding van rupsen van de aardappelstengelboorder.

In gebieden waar aantasting is te verwachten vanaf half mei een behandeling uitvoeren en deze maximaal 1x herhalen met een interval van 7 dagen. Niet vaker dan 2 maal per jaar toepassen.

Dosering: 0,45 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Suiker en voederbieten, ter bestrijding van trips.

Een behandeling uitvoeren zodra op de jonge plantjes trips wordt waargenomen.

Dosering: 0,2 liter per ha

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.


 

Erwten en veldbonen, ter bestrijding van de bladrandkever.

Zodra vreterij van de bladrandkever aan de blaadjes van de jonge planten wordt waargenomen een behandeling uitvoeren.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Erwten, ter bestrijding van trips.

Een behandeling uitvoeren zodra op de jonge planten aantasting wordt waargenomen.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.


Stamslabonen, ter bestrijding van trips.

Een behandeling uitvoeren zodra op de jonge planten aantasting wordt waargenomen. Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Spruitkool, ter bestrijding van koolrupsen, koolmot en bladrollers.

Ter bestrijding van de koolgalmug het middel toepassen zodra de eerste eitjes zijn afgezet. De bespuiting zonodig herhalen. Maximaal 6 maal per jaar toepassen.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Sluitkool, ter bestrijding van koolrupsen, koolmot en bladrollers.

Ter bestrijding van de koolgalmug het middel toepassen zodra de eerste eitjes zijn afgezet. De bespuiting zonodig herhalen na 7 tot 10 dagen. Maximaal 3 maal per jaar toepassen.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Bloemkool, broccoli en koolrabi, ter bestrijding van koolrupsen, koolmot en bladrollers.

Ter bestrijding van de koolgalmug het middel toepassen zodra de eerste eitjes zijn afgezet. Maximaal 1 maal per jaar toepassen.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Zaai- en plantuien en sjalotten, ter bestrijding van trips.

Een behandeling uitvoeren zodra op de jonge planten aantasting wordt waargenomen. Maximaal 3 maal per jaar toepassen.

Dosering: 0,2 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 75%.

 

Graszaadteelt, graszodenteelt, weiland en sportvelden, ter bestrijding van de larven van de rouwvlieg.

Bij voorkeur spuiten met veel water; regen kort na de toepassing heeft een gunstig effect op de bestrijding. De bestrijding dient in de herfst te worden uitgevoerd. Om de kans op contact van het middel met de larven te vergroten verdient het aanbeveling weiland eerst te slepen en geen drijfmest kort voor de bespuiting toe te dienen.

Dosering: 0,3 liter per ha.

 

Tulp, hyacint, iris en gladiool, ter beperking van verspreiding van non-persistente virussen.

Het middel vanaf het moment dat bladluizen verwacht worden wekelijks toepassen.

Bij tulpen de bespuitingen voortzetten tot de tweede/derde week van juni, bij hyacinten en irissen tot tien dagen voor het rooien en bij gladiolen tot een week voor de bloei. Bij gladiolen uitsluitend toepassen op virusvrije partijen.

Dosering: 0,4 liter per ha.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 50% in combinatie met luchtondersteuning of een dop uit de driftreductieklasse van minimaal 90% zonder luchtondersteuning of er dient gebruik gemaakt te worden van een overkapte beddenspuit.

 

Lelies, ter beperking van verspreiding van non-persistente virussen.

Het middel vanaf het moment dat bladluizen verwacht worden toepassen; in april, mei, juni en juli wekelijks toepassen; in augustus/september om de 10 dagen.

Dosering: 0,4 liter per ha.

Gecombineerd toepassen met minerale olie kan het effect verbeteren.

Raadpleeg voor de dosering van minerale olie de voorlichting.

Bij toepassing op percelen die grenzen aan watergangen dient gebruik gemaakt te worden van een dop uit de driftreductieklasse van minimaal 50% in combinatie met luchtondersteuning of een dop uit de driftreductieklasse van minimaal 90% zonder luchtondersteuning of er dient gebruik gemaakt te worden van een overkapte beddenspuit.

 

Bloemisterijgewassen onder glas, ter bestrijding van rupsen, bladrollers, witte vlieg, mineervlieg, trips en bladluizen.

Een behandeling uitvoeren zodra aantasting optreedt. Volwassen mineervliegen en Floridamotten bestrijden d.m.v. een ruimtebehandeling.

Dosering: 0,05 % (50 ml per 100 liter water).

Bij gebruik van straalmotorspuit 100 ml per 1000 m˛.

 



HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE II bij het besluit d.d. 3 juli 2009 tot uitbreiding van de toelating van het middel Sumicidin Super, toelatingnummer 10211 N

 

RISKMANAGEMENT

 

 

 

Contents                                                                  Page

 

1.   Identity of the plant protection product        2

 

2.   Physical and chemical properties                  3

 

3.   Methods of analysis                                         9

 

4.   Mammalian toxicology                                      11

 

5.   Residues                                                            16

 

6.   Environmental fate and behaviour                18

 

7.   Ecotoxicology                                                    29

 

8.   Efficacy                                                               45

 

9.   Conclusion                                                        46

 

10. Classification and labelling                             46


 

1.         Identity of the plant protection product

 

1.1       Applicant

Sumitomo Chemical Agro Europe S.A.S.

2, Rue Claude Chappe

69370 St-Didier-au-mont d’Or

France

 

1.2       Identity of the active substance

Common name

Esfenvalerate

Name in Dutch

Esfenvaleraat

Chemical name

(S)-a-Cyano-3-phenoxybenzyl-(S)-2-(4-chlorophenyl)-3- methylbutyrate

CAS no

66230-04-4

EC no

not allocated

 

The active substance was included in Annex I of Directive 91/414/EEC on 1 August 2001.

 

1.3       Identity of the plant protection product

Name

Sumicidin Super

Formulation type

EC

Content active substance

25 g pure a.s./L

 

The formulation was not part of the assessment of the active substance for inclusion in the Annex I of Directive 91/414/EEC.

 

1.4       Function

Insecticide.

1.5       Uses applied for

The extension of use is applied for the use in planted and drilled onions and shallot.

Uses

Dose a.s.

(kg a.s./ha)

Number of applications

Interval between applications

Application time (growth stage and season)

New Uses

 

 

 

 

Planted onions, drilled onions and shallot

0.005

3

5-7 days

June-July, until BBCH 47

 

 

 

 

 

 

1.6       Background to the application

It concerns an extension of the authorization.

1.7       Packaging details

1.7.1    Packaging description

Material:

co-extruded HDPE/PA

Capacity:

1 L and 5 L

Type of closure and size of opening:

50 mm opening (1 L)

63 mm diameter (5 L)

Other information

ADR compliant and UN certified

 

1.7.2    Detailed instructions for safe disposal

See application form and MSDS (no particular recommendations).

 

 

2.                  Physical and chemical properties

 

2.1              Active substance: Esfenvalerate

Data on the identity and the physical and chemical properties is taken from the List of Endpoints established when the substance was placed on Annex I of Directive 91/414/EEC. Changes and/or additions are taken up in italics.

 

Identity

Active substance (ISO Common Name)

Esfenvalerate

Chemical name (IUPAC)

(S)-a-Cyano-3-phenoxybenzyl-(S)-2-(4-chlorophenyl)-3- methylbutyrate

Chemical name (CA)

[(S)-(R*,R*)-Cyano(3-phenoxyphenyl)methyl-4-chloro-a- (1‑methylethyl)benzeneacetate

CIPAC No

481

CAS No

66230-04-4

EEC No (EINECS or ELINCS)

----

FAO Specification (including year of                                publication)

Not available

Minimum purity of the active substance as manufactured (g/kg)

830 g/kg

Molecular formula

C25H22ClNO3

Molecular mass

419.9

Structural formula

 

 

Physical-chemical properties

Melting point (state purity)

59.1 - 60.1 °C (99.9 %)

Boiling point (state purity)

> 360 °C

Temperature of decomposition

Not determined

Appearance (state purity)

White crystalline solid (99.4 %)

Relative density (state purity)

1.23 g/cm3 at 26 °C (99.4 %)

Surface tension

Water solubility too low to require determination

Vapour pressure (in Pa, state temperature)

1.17 x 10-9 Pa at 20 °C (estimated) (99.9% pure)

Henry’s law constant (in Pa·m3·mol-1)

4.92 x 10-4 Pa·m3·mol-1

Solubility in water (in g/l or mg/l, state                                   temperature)

< 1mg/l (pH: 5.3) at 20 °C

values at other pH not required

Solubility in organic solvents (in g/l or

mg/l, state temperature)

n-hexane: 26 g/l

methanol: 82 g/l

in most other organic solvents: > 500 g/l

Partition co-efficient (log Pow) (state pH and temperature)

6.24 at 25 °C (pH not stated)

Hydrolytic stability (DT50) (state pH and temperature)

pH 5: 129 d

pH 7: limited hydrolysis

pH 9: 65 d

Dissociation constant

No dissociation

UV/VIS absorption (max.) (if absorption >290 nm state ε at wavelength)

2.3 x 103  L.mol-1.cm-1 at 278 nm

> 10 L.mol-1.cm-1at 290 nm

Photostability (DT50) (aqueous, sunlight,  state pH)

10 d (sunlight), 6 d (artificial sunlight), in water

Quantum yield of direct photo-

transformation in water at λ > 290 nm

f = 6.8 x 10-3

Photochemical oxidative degradation in air

DT50 = 1.2 days

Flammability

Not highly flammable

Auto-flammability

435 °C

Oxidising properties

Not oxidising

Explosive properties

Non-explosive

 

2.2              Plant protection product: Sumicidin Super

Data on the plant protection product is taken from information provided by the applicant. The range of the application concentrations of the plant protection product is 0.02-1.0% (0.05-0.1% for onions, for which an extension of the field of use was requested).

 

Section

(Annex point)

Study

Guidelines and GLP

Findings

Evaluation and conclusion

B.2.2.1 (IIIA 2.1)

Appearance: physical state

Not GLP

Visual

Clear liquid

Acceptable

B.2.2.2 (IIIA 2.1)

Appearance: colour

Not GLP

Visual

Pale yellow

Acceptable

B.2.2.3 (IIIA 2.1)

Appearance: odour

Not GLP

Organoleptic

Faint characteristic

Acceptable

B.2.2.4 (IIIA 2.2)

Explosive properties

Not GLP

statement

Not explosive

Acceptable

B.2.2.5 (IIIA 2.2)

Oxidising properties

Not GLP

statement

Not oxidising

Acceptable

B.2.2.6 (IIIA 2.3)

Flammability

 

Not applicable

 

B.2.2.7 (IIIA 2.3)

Auto-flammability

GLP

EC A15

437°C (5% EC formulation)(A)

Acceptable

B.2.2.8 (IIIA 2.3)

Flash point

Not GLP(B)

ASTM D56

27°C

Acceptable

B.2.2.9 (IIIA 2.4)

Acidity / alkalinity

Not GLP

 

<0.1% as H2SO4  (5% EC formulation)(A)

Study not  acceptable: report not dated, not signed, performing laboratory not identified. No further data needed since the pH is between 4 and 8.

B.2.2.10 (IIIA 2.4)

pH

Not GLP(B)

CIPAC MT75.2

1% in distilled water: 5.2

Acceptable

B.2.2.11 (IIIA 2.5)

Surface tension

GLP

EC A5

40.9 mN/m at 20oC (1 g/L of a 5% EC formulation)(A)

Study not  acceptable:

measurement of diluted instead of neat product; 20°C instead of 25°C and/or 40°C. No further data required since the product is classified with R65, based on its composition.

 

 

GLP

EC A5

Undiluted product:

25.2 mN/m at 25oC

24.3 mN/m at 40oC

Acceptable

 

Based on its composition, the product is classified with R65.

B.2.2.12 (IIIA 2.5)

Viscosity

Not GLP(B)

OECD 114

1.2 mPa at 20oC

Study not  acceptable: incorrect unit (mPa); no results of individual measurements; no determination at 40°C. No further data required since the product is classified with R65, based on its composition.

B.2.2.13 (IIIA 2.6)

Relative density

Not GLP(B)

EEC A3

 

D204 = 0.894

Acceptable

B.2.2.14

(IIIA 2.6)

Bulk (tap) density

 

Not applicable

 

B.2.2.15 (IIIA 2.7)

Storage stability

Not GLP

CIPAC MT46

Chemically and physically stable for 2 weeks at 54oC in glass.

 

Properties determined before and after storage: a.i. content, appearance, pH (1%), emulsion stability (0.1% and 5%, at 10°C and 30°C, CIPAC C and D water and WHO soft water).

Acceptable

 

 

GLP

CIPAC MT39

Stable for 7 days at 0oC

Acceptable

B.2.2.16 (IIIA 2.7)

Shelf life

Not GLP

Method not specified but in agreement with GIFAP 17

Chemically and physically stable for 4 years at ambient temperature in E-318 coating can (1 litre tinplate can lined with epoxy phenol-butyral resin) and in glass ampoule.

 

Properties determined before and after storage: a.i. content, appearance, pH (1%), emulsion stability (0.1% and 5%, at 30°C, CIPAC C and D water and WHO soft water).

 

Both packs were stable.

Acceptable

 

 

GLP

Method not specified

The chemically and physical properties of a sample of Sumicidin Super, that had been stored for 4 years at ambient temperature in sealed white translucent PE/PA bottles of 1L with a screw cap, satisfied the requirements (e.g. a.i. content, emulsion stability) and/or were within the range of values from other studies (e.g. pH).

 

Properties determined after storage: a.i. content, appearance, pH (1%, CIPAC MT 75.3: pH = 5.68), acidity (CIPAC MT 31.2.3: 0.005% as H2SO4), density (CIPAC MT 3.2.1: 0.8929 g/cm3 at 20°C), foaming (CIPAC MT 47.2, 30°C, 0.4% v/v in CIPAC D water: 19/7/6/5 mL after 10 sec/1 min/3 min/12 min), emulsion stability (CIPAC MT 173, 0.1% and 0.4%, at 30°C, CIPAC A and D water: 96.4-100.6%).

 

The pack was stable.

Acceptable

 

 

B.2.2.17

(IIIA 2.8)

Wettability

 

Not applicable

 

B.2.2.18 (IIIA 2.8)

Persistent foaming

Not GLP

CIPAC MT47

 

0.1%/5% of a 5% EC formulation)(A) in CIPAC D water:

3.4/0.7 mL foam after 0.5 min

2.7 mL/trace of foam after 1 min

2.0/0 mL foam after 2 min

2.0/0 mL foam after 3 min

Acceptable

B.2.2.19

(IIIA 2.8)

Suspensibility

 

Not applicable

 

B.2.2.20

(IIIA 2.8)

Spontaneity of dispersion

 

Not applicable

 

B.2.2.21

(IIIA 2.8)

Dilution stability

 

Not applicable

 

B.2.2.22

(IIIA 2.8)

Dry sieve test

 

Not applicable

 

B.2.2.23

(IIIA 2.8)

Wet sieve test

 

Not applicable

 

B.2.2.24

(IIIA 2.8)

Particle size distribution

 

Not applicable

 

B.2.2.25

(IIIA 2.8)

Content of dust/fines

 

Not applicable

 

B.2.2.26

(IIIA 2.8)

Attrition and friability

 

Not applicable

 

B.2.2.27 (IIIA 2.8)

Emulsifiability, re-emulsifiability and emulsion stability

Not GLP

CIPAC MT36

0.1% and 5% dilution were stable at 10°C and 30°C, in CIPAC C and D water and WHO soft water.

Acceptable

B.2.2.28

(IIIA 2.8)

Stability of dilute emulsion

 

See above

 

B.2.2.29

(IIIA 2.8)

Flowability

 

Not applicable

 

B.2.2.30

(IIIA 2.8)

Pourability (rinsibility)

 

Not applicable

 

B.2.2.31

(IIIA 2.8)

Dustability

 

Not applicable

 

B.2.2.32

(IIIA 2.8)

Adherence/ distribution to seeds

 

Not applicable

 

2.9.1

Physical compatibility with other products

GLP

U.I.P.P.

In CIPAC A and D water 0.066 and 0.133% Sumi Alpha 2.5 EC are compatible with 0.66 and 2.0% mineral oil

Acceptable

2.9.2

Chemical compatibility with other products

 

See above

 

(A) Besides higher a.i. content, the composition of the 5% EC was comparable to that of Sumicidin Super

(B) Study work was performed prior to 1991, when GLP requirements came into force.

 

Emulsion stability of a fresh sample was determined at 0.1-5%, and of a 4 year old sample at 0.1-0.4%, and was always acceptable (for 4 year old sample: 96-101%). On the basis of this information, emulsion stability at the lowest use concentration of 0.02% is considered to be acceptable.

 

Conclusion

The physical and chemical properties of the active substance and the plant protection product are sufficiently described by the available data. Neither the active substance nor the product has any physical or chemical properties, which would adversely affect the use according to the proposed use and label instructions.

 

2.3       Data requirements

None.

 

 

3.                  Methods of analysis

 

3.1.            Analytical methods in technical material and plant protection product

Description and data on the analytical methods are taken from the DAR.

 

Technical as (principle of method)

GC/FID; HPLC-UV (isomer ratio)

Impurities in technical as (principle of method)

GC/FID

Preparation (principle of method)

GC/FID; HPLC-UV (isomer ratio)

 

Conclusion

All of the above analytical methods (including that for the 25 g/L EC preparation) have been assessed in the DAR and are considered to be acceptable.

 

3.2              Residue analytical methods

Description and data on residue analytical methods are taken from the DAR, supplemented with information from the addendum to the DAR (10/08/99) and with studies supplied by the applicant. Changes and/or additions to the DAR with addendum are taken up in italics.

 

Food/feed of plant origin (principle of method and LOQ for methods for monitoring purposes)

GC/ECD

LOQ: 0.01 mg/kg (potatoes, rapeseed, rapeseed oil, peas, peaches, cabbages, Brussels sprouts, wheat, barley)

 

DFG Method (GC/ECD)

LOQ: 0.01 mg/kg (potatoes, tomatoes, apple, rapeseed, dry peas, onion)

Food/feed of animal origin (principle of method and LOQ for methods for monitoring purposes)

GC/ECD

LOQ: 0.01 mg/kg (muscle, liver, kidney, fat, milk, egg)

 

Soil (principle of method and LOQ)

GC/ECD

LOQ: 0.05 mg/kg

Water (principle of method and LOQ)

GC/ECD

LOQ: 0.05 μg/l

 

GC/ECD

LOQ 0.001 μg/l (surface and drinking water)

Air (principle of method and LOQ)

GC/ECD

LOQ: 0.1 μg/m3

Body fluids and tissues (principle of method and LOQ)

GC/ECD

LOQ 0.005 mg/L (blood)

 

Based on the proposed use of the plant protection product analytical methods for determination of residues in food/feed of plant origin are required for dry and watery matrices.

 

Definition of the residue and MRLs for

Matrix

Proposed definition of the residue for monitoring

Proposed MRL

Food/feed of plant origin

Esfenvalerate (sum of isomers)

Onion: 0.02* mg/kg

Food/feed of animal origin

Esfenvalerate (sum of isomers)

 

 

Required LOQ

Soil

Esfenvalerate (sum of isomers)

0.05 mg/kg (default)

Drinking water

Esfenvalerate (sum of isomers)

0.1 µg/L (drinking water guideline)

Surface water

Esfenvalerate (sum of isomers)

0.08 µg/L (EAC invertebrates from mesocosm study)

Air

Esfenvalerate (sum of isomers)

0.0054 mg/m3 (derived from the AOEL according to SANCO/825/00)

Body fluids and tissues

Esfenvalerate (sum of isomers)

0.05 mg/L(blood)

0.1 mg/kg (tissues; meat or liver)

 

The residue analytical methods, included in the abovementioned List of Endpoints, are suitable for monitoring of the proposed MRLs.

 

The residue analytical methods for water, soil, air and body fluids and tissues, evaluated in the DAR, are acceptable and suitable for monitoring of residues in the environment.

 

Conclusion

The submitted analytical methods meet the requirements. The methods are specific and sufficiently sensitive to enable their use for enforcement of the MRLs and for monitoring of residues in the environment.

 

3.3       Data requirements

None.

 

3.4       Physical-chemical classification and labelling

Proposal for the classification of esfenvalerate (symbols and R phrases)
(EU classification) concerning physical chemical properties

 

Symbol(s):

-

Indication(s) of danger: -

 

Risk phrase(s)

-

-

 

Proposal for the classification and labelling of the formulation concerning physical chemical properties

 

Regarding the physical and chemical properties of the formulation, the method of application and the further information on the plant protection product, the following labelling of the preparation is proposed:

 

Substances, present in the formulation, which should be mentioned on the label by their chemical name (other very toxic, toxic, corrosive or harmful substances):

Xylene

Symbol:

Xn

Indication of danger:

Harmful

R phrases

10

65

Flammable

Harmful: may cause lung damage if swallowed.

S phrases

21

62

When using do not smoke.

If swallowed, do not induce vomiting: seek medical advice immediately and show this container or label.

Special provisions:
DPD-phrases

-

-

Child-resistant fastening obligatory?

Not applicable

Tactile warning of danger obligatory?

Not applicable

 

Explanation:

Hazard symbol:

-

Risk phrases:

-

Safety phrases:

-

Other:

-

 

The proposed labelling above is equal to the previous decision regarding the labelling of the plant protection product Sumicidin Super (dated March 30th, 2007).

 

4.                 Mammalian toxicology

 

List of Endpoints

Esfenvalerate is an existing active substance, included in Annex I of 91/414/EEC. The final List of Endpoints presented below is taken from the final review report on esfenvalerate (Esfenvalerate. 6846/VI/97 – final, d.d. 30 November 2000). Where relevant, some additional remarks/information are given in italics.

 

Additional information with regard to esfenvalerate:

Esfenvalerate is a type-II pyrethroid. Pyrethroids containing an α-cyano group have an effect on the peripheral nervous system and areas in the central nervous system, e.g. certain binding sites (GABA α-receptors) in the brain.

Fenvalerate is a racemic mixture of four stereo isomers (isomer ratio: 25% A-alpha, 25% B-alpha, 25% A-beta and 25% B-beta). Esfenvalerate is the A-alpha isomer. The EU dossier contains studies with esfenvalerate and with fenvalerate. From toxicological studies which were performed with both substances it appeared that the results from studies with fenvalerate can be extrapolated to esfenvalerate, after correction with a factor 4 (e.g. NOAEL fenvalerate = 4 mg/kg bw/day is equivalent to NOAEL esfenvalerate = 1 mg/kg bw/day).

 

Absorption, distribution, excretion and metabolism in mammals

Rate and extent of absorption:

ca. 90% in biliary study in rats

Distribution:

Widely

Potential for accumulation:

None

Rate and extent of excretion:

94 - 100 % excreted after 7 d

Toxicologically significant compounds:

None

Metabolism in animals:

20 metabolites, being formed by oxidation in the acid and alcohol parts of the molecule, cleavage of the ester linkage and conversion of the cyano group.

 

 

Acute toxicity

Rat LD50 oral:

88.5 mg/kg bw

Rat LD50 dermal:

> 5000 mg/kg bw

Rat LC50 inhalation:

480 - 570 mg/m3

Skin irritation:

Non-irritant

Eye irritation:

Non-irritant

Skin sensitization (test method used and result):

Sensitizing, M & K method.

 

 

Short term toxicity

Target / critical effect:

Clinical (neurotoxic) symptoms

Lowest relevant oral NOAEL / NOEL:

5 mg/kg bw/day (oral 1 year, dog)

Lowest relevant dermal NOAEL / NOEL:

1000 mg/kg bw/day (21 days, rabbit)

Lowest relevant inhalation NOAEL / NOEL:

Not relevant.

 

 

Genotoxicity

Negative in in vitro and in vivo studies 1

1 The genotoxic potential was investigated in four in vitro studies (Ames test, chromosome aberration test in mammalian cells, gene mutation test in mammalian cells and UDS test) and in one in vivo study (micronucleus test in mouse bone marrow).

 


Long term toxicity and carcinogenicity

Target / critical effect:

Reduction in body weight gain

Lowest relevant NOAEL:

150 ppm Ű 7.5 mg/kg bw/day in rat with fenvalerate Ű 1.87 mg/kg bw/day esfenvalerate.

Carcinogenicity:

Negative in studies with fenvalerate in mice and rat.

 

Reproductive toxicity

Target / critical effect - Reproduction:

Reduced body weight gain in parental animals

Lowest relevant reproductive NOAEL:

2 mg/kg bw/day esfenvalerate.

Target / critical effect - Developmental toxicity:

Maternal toxicity, neurotoxicity, reduced body weight gain and food consumption

Lowest relevant developmental NOAEL:

2 mg/kg bw/d esfenvalerate in rabbit

 

 

Delayed neurotoxicity

Some neurotoxic effects in rats at lethal doses in acute toxicity with esfenvalerate. In a 3 months neurotoxicity study no irreversible neurotoxic effects (NOAEL = 3 mg/kg bw/day).

 

 

Other toxicological studies

None.

 

 

Medical data

Skin symptoms and reactions like paraesthesia were observed as a result of exposure to the active substance; poisoning cases including accidental and occupational were reported.

 

Summary

 

 

Value

Study

Safety factor

ADI:

0.02 mg/kg

Reproduction, esfenv., and long term fenval. in rat
NOAEL – 2 mg/kg bw/day

SF=100

AOEL systemic:

0.018 mg/kg bw/day

Reproduction, rat, esfenv. NOEL - 2 mg/kg bw/d;
correction for oral absorption 90%

SF=100

ARfD (acute reference dose):

0.05

Acute oral rat and mouse, and acute neurotoxicity; NOAEL: 5 mg/kg bw/day

SF = 100

 

Dermal absorption

In vitro studies showed a dermal absorption of 0.6% in human epidermis and 44% in rat skin. Due to this difference, decided to take 10% for dermal absorption. 2

2 In the modelling for operator exposure presented in the DAR a default figure of 10% was used. During the evaluation process, an in vitro dermal absorption study was submitted. In September 1998, the RMS recalculated worker exposure based on the new dermal absorption study and a new AOEL. This was discussed in the WG-evaluation d.d. 9 February 1999. Not all MS agreed to the conclusions of the RMS with regard to dermal absorption. The question had to be forwarded to the SCP to obtain further expert opinion.

 

The following question was forwarded to the SCP:

Does the available information on dermal absorption allow a reliable estimate to be made for man, if so, at what level?

 

SCP opinion (6 April 2000):

The in vitro study on the rat and human skin indicates an unusually large difference in dermal absorption (44% versus 0.6%) compared with similar experiments carried out on other active substances. In the absence of more conclusive data the Committee is of the opinion that a more conservative estimate of operator absorption is advisable. To confirm the reliability of such a very low value, a study involving the monitoring of workers in the field would be necessary.

 

Data requirements active substance

No additional data requirements are identified.

 

4.1       Toxicity of the formulated product (IIIA 7.1)

The formulation Sumicidin Super needs to be classified as R22 ‘Harmful if swallowed’, based on the acute oral toxicity (LD50 rat 320-400 mg/kg bw).

The formulation Sumicidin Super does not need to be classified on the basis of its acute dermal toxicity (LD50 rat > 2000 mg/kg bw).

The formulation Sumicidin Super needs to be classified as R20 ‘Harmful by inhalation’, based on the acute inhalation toxicity (LC50 rat 4.8 mg/L).

The formulation Sumicidin Super is not classifiable as a skin irritant.

The formulation Sumicidin Super is considered severely irritating to eyes and needs to be classified as R41 ‘Risk of serious damage to eyes’.

The formulation Sumicidin Super is positive in a Maximisation test for skin sensitisation and needs to be classified as R43 ‘May cause sensitisation by skin contact’.

 

4.1.1    Data requirements formulated product

No additional data requirements are identified.

 

4.2       Dermal absorption (IIIA 7.3)

See List of Endpoints (more details on the performed studies are not available, since the addendum on dermal absorption is not available on Circa). A dermal absorption value of 10% will be used for the concentrate and the spray dilution.

 

4.3       Available toxicological data relating to non-active substances (IIIA 7.4)

Other formulants: no reason for toxicological concern.

 

4.4       Exposure/risk assessments

Overview of the intended uses

An application has been submitted for the extension of the authorisation of the plant protection product Sumicidin Super, an insecticide based on the active substance esfenvalerate, in onions and shallots.

 

Sumicidin Super is an EC formulation and contains 25 g/L esfenvalerate.

 

The formulation Sumicidin Super is applied by mechanical downward spraying. The formulation is applied 2-3 times during the period June – July with a maximum dose of 0.2 L formulation / ha. Therefore, a semi-chronic exposure duration is applicable for the operator (including contract workers).

 

Calculation of the AOEL

Since esfenvalerate is included in Annex I of 91/414/EEC, the semi-chronic EU-AOEL of 0.018 mg/kg bw/day (= 1.3 mg/day for a 70-kg operator), based on the reproduction study in rats, is applied (see List of Endpoints). The ADI is based on the same study and on a chronic study with fenvalerate in rats. The AOEL can therefore also be regarded as a chronic AOEL.

 

4.4.1    Operator exposure/risk

Exposure to esfenvalerate during mixing and loading and application of Sumicidin Super is estimated with models. The exposure is estimated for the unprotected operator. In the Table below the estimated internal exposure is compared with the systemic AOEL. In general, mixing and loading and application is performed by the same person. Therefore, for the total exposure, the respiratory and dermal exposure during mixing/loading and application have to be combined. The maximum dose in the field is 0.005 kg/ha esfenvalerate.

Table T.1 Internal operator exposure to esfenvalerate and risk assessment for the use of Sumicidin Super

 

Route

Estimated internal exposure a (mg /day)

Systemic

AOEL

(mg/day)

Risk-index b

Mechanical downward spraying on onions and shallots

Mixing/

Loading

Respiratory

<0.01

1.3

<0.01

Dermal

0.10

1.3

0.08

Application

Respiratory

<0.01

1.3

<0.01

Dermal

0.015

1.3

0.01

 

Total

0.1

1.3

0.1

a     External exposure was estimated by EUROPOEM. Internal exposure was calculated with:

·       biological availability via the dermal route:   10% (see 4.2)

·       biological availability via the respiratory route:   100% (worst case)

b     The risk-index is calculated by dividing the internal exposure by the systemic AOEL.

 

4.4.2    Bystander exposure/risk

The bystander exposure is only a fraction of the operator exposure. Based on the low risk-index for the operator, no exposure calculations are performed for bystanders.


 

4.4.3    Worker exposure/risk

Shortly after application it is not necessary to perform any re-entry activities during which intensive contact with the treated crop will occur. Therefore no worker exposure is calculated.

 

4.4.4    Re-entry

See 4.4.3 Worker exposure/risk.

 

Overall conclusion of the exposure/risk assessments of operator, bystander, and worker

The product complies with the Uniform Principles.

 

Operator exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the unprotected operator after dermal and respiratory exposure to esfenvalerate as a result of the application of Sumicidin Super in onions and shallots.

 

Bystander exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the unprotected bystander due to exposure to esfenvalerate during application of Sumicidin Super in onions and shallots.

 

Worker exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the unprotected worker after dermal and respiratory exposure during re-entry activities in onions and shallots due to exposure to esfenvalerate after application of Sumicidin Super.

 

4.5       Appropriate mammalian toxicology and operator exposure end-points relating to
the product and approved uses

See List of Endpoints.

 

4.6       Data requirements

None.

 

4.7       Combination toxicology

Sumicidin Super contains only one active substance and it is not described that it should be used in combination with other formulations.

 

4.8       Mammalian toxicology classification and labelling

 

Proposal for the classification of the active ingredient (symbols and R phrases)
(EU classification)

 

Symbol:

T

Indication of danger: Toxic

 

Risk phrases

R23/25

R43

Toxic by inhalation and if swallowed

May cause sensitization by skin contact

 

Proposal for the classification and labelling of the formulation concerning health

 

The current classification and labelling (Xn, R20/22, R41, R43, S26, S36/37/39b, S42k, SPo 2, DPD01), which is prepared in conformity with Directive 1999/45/EG, can be maintained.

 


 

5.         Residues

 

Esfenvalerate is an existing active substance, included in Annex I of 91/414/EEC. The cultivation of onions is not discussed in the DAR. Residue trials with onions are summarised below. Endpoints needed to interpret the data from the residue trails are taken from the DAR.

 

List of Endpoints (October 1996) (Most recent DAR)

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered

Fruits (apple, tomato), leafy crops (cabbage, lettuce), pulses and oilseeds (beans, soy beans)

Rotational crops

Lettuce, beets, wheat

Plant residue definition for monitoring

Esfenvalerate (sum of isomers)

Plant residue definition for risk assessment

Esfenvalerate (sum of isomers)

Conversion factor (monitoring to risk assessment)

-

 

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

Animals covered

Lactating cows, laying hens

Animal residue definition for monitoring

Esfenvalerate (sum of isomers)

Animal residue definition for risk assessment

Esfenvalerate (sum of isomers)

Conversion factor (monitoring to risk assessment)

-

Metabolism in rat and ruminant similar (yes/no)

Yes

Log Pow

6.24 at 25°C

Fat soluble residue (yes/no)

Yes

Potential for bioaccumulation

yes

 

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

 

no residues above LOD expected, exc. wheat straw, were residues are below those from direct treatment of cereals

 

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 introduction)

 

fruits, vegetables and cereals as well as in products of animal origin.

No significant racemization of esfenvalerate was observed.

 

Residues from livestock feeding studies (Annex IIA, point 6.4., Annex IIIA, point 8.3)

Intakes by livestock 0.1 mg/kg diet/day

Ruminant: no

Poultry: no

Pig: No

Muscle

-

-

-

Liver

-

-

-

Kidney

-

-

-

Fat

-

-

-

Milk

-

-

-

Eggs

-

-

-

 

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

Crop/processed crop

Number of studies

Transfer factor

Apples/peeled apples

5

<0.33

Peaches/peeled peaches

5

<0.33

 

Residue definition (plant and animal)

Metabolism studies are performed with fruits (apple, tomato), leafy crops (cabbage, lettuce), pulses and oilseeds (beans, soy beans).

The extrapolated definition of the residue is: Esfenvalerate (sum of RR and SS isomers).

For the extrapolation of the animal residue definitions metabolism studies were performed with lactating cows and laying hens. The residue definition for products of animal origin is: esfenvalerate (sum of RR and SS isomers).

           

Residue data

For the extension of authorisation of Sumicidin Super, three supervised residue trials in bulb onion have been submitted.

The trials were performed according to GLP and were performed according to the intended use. Onions is a major crop, therefore, a minimum of 8 residue trials are required. However the three trials show sufficiently that no residues are expected. As for other similar crops, a “zero residue situation” is expected for the use of Sumicidin Super on bulb onions. A sufficient number of residue trials is available.

The analysed residue values amount all < 0.01 mg/kg.

Trials with onions can be extrapolated to shallots.

Residues from livestock feeding studies

Onions and shallots are not used as feed.

 

Maximum residue levels.

An MRL of 0.02* mg/kg is available in Annex II of directive 396/2005/EC for both onions and shallots.

 

Calculation of the ADI and the ARfD

The ADI is based on the NOAEL of 2 mg/kg bw/d in the chronic reproduction study in rat. Application of a safety factor for inter- and intraspecies differences of 100 results in an ADI of 0.02 mg/kg bw/day (see the List of Endpoints for mammalian toxicology).

 

The ARfD is based on the NOAEL of 5 mg/kg bw/d in the acute neurotoxicity study in rat. Application of a safety factor for inter- and intraspecies differences of 100 results in an ARfD of 0.05 mg/kg bw/day (see the List of Endpoints for mammalian toxicology).

 

Consumer risk assessment

Risk assessment for chronic exposure through diet

Based on the proposed residue tolerances, a calculation of the National Theoretical Maximum Daily Intake (NTMDI) was carried out using the National Dutch diet and the EU-MRLs. Calculation of the NTMDI shows that 3.9 % and 9.0% of the ADI is used for the general population and for children, respectively.

 

Risk assessment for acute exposure through diet

A calculation of the National Estimated Short Term Intake (NESTI) was carried out using the National Dutch diet (‘large portion sizes’; 97,5 percentile from dietary data), the UK ‘unit weights’ and previously mentioned EU-MRL’s for onion and shallots. The NESTI uses 0.7 % and 1.7 % of the ARfD for the general population (onion) and for children (onion), respectively.

 

Conclusion

Based on the assessment for residues, no risk for the consumer due to the exposure to esfenvalerate is currently expected.

 

Data requirements

None.

 

 

  1. Environmental fate and behaviour

 

Risk assessment is done in accordance with HTB 1.0 for products based on
- active substances which have already been placed on Annex I of Directive 91/414/EEC

- “new” active substances;

for other plant protection products, HTB 0.2 applies.

This means that for the current application of Sumicidin Super, risk assessment is done in accordance with HTB 1.0.

 

Esfenvalerate is listed on Annex I of Directive 91/414/EEC since August 1st 2001. The re-registration in The Netherlands was completed with the decision in C-167.3.2 (20040072 THG) d.d. 3th of March 2006. In the re-registration process the use in onions and shallots was withdrawn from the label based on the residues assessment. This assessment is mainly based on the assessment in C-167.3.2. The List of Endpoints for fate and behaviour is dated 28th April 2000. Additionally, the article of Samsoe-Petersen et al. (2001), Fate and effects of esfenvalerate in agricultural ponds (Environmental Toxicology and Chemistry 20: 1570-1578) was provided and has been used for the aquatic risk assessment. This information is added in italics.

 

List of Endpoints Fate/behaviour in the environment

 

Fate and behaviour in soil

Route of degradation

 

Aerobic:

13 soils:

6 Japanese soils: 2 (25 °C) + 4 (15 °C)
3 European soils at 20 °C
4 American soils at 25 °C
14C-phenoxyphenyl; 14C-benzylmethyne;
14C-carbonyl; 14C-chlorophenyl

Mineralization after 100 days:

58.3 %; 82.4 %; 65.2 % (European soils at 50 % MWHC); 21.5 % (90 d)

Non-extractable residues after 100 days:

5.3 %; 3.3 %; 4.9 % (European soils at 50 % MWHC)

27.5 % (90 d)

35 % - 39.1 % (180 d)

Relevant metabolites above 10 % of applied active substance: name and/or code
% of applied rate (range and maximum)

More than 7 metabolites formed in amounts
< 10 %
CONH2-Fen reached up to 32 % AR (silty clay loam soil in USA after 12 months)

 

 

Supplemental studies

 

Anaerobic:

Study not submitted for esfenvalerate.

14C-chlorophenylfenvalerate in 3 USA soils at 23 °C:
5 - 14 % non-extractable residues after 90 d
4 - 5.2 % CO2 after 90 d
Metabolites formed in amounts < 10 %

 

 

Soil photolysis:

2 Japanese soils exposed to natural sunlight for 30 d.

In the dark:      DT50 = 14 d; 64 d
With light:        DT50 = 1.1 d; 2.5 d
CONH2 - Esf. was found in light (48.4 %)
                             Dark conditions (61 %)

Other products < 10 %

 

 

Remarks:

Esfenvalerate is degraded by cleavage of the ester bond leading to alcohol and acid moieties, ring hydroxylation at the 4’-phenoxy position and hydration of the cyano group to an amide.


Rate of degradation

 

Laboratory studies

Method of calculation: Linear regression analysis 1st order kinetics; r2 = 0.952 - 0.996

DT50lab (20 °C, aerobic):

28 - 50 d
26.9 - 74 d (25 °C)

Average 53 d (20°C)

DT90lab (20 °C, aerobic):

Not determined. It was not possible to determine the value in the period of examination.

DT50lab (10 °C, aerobic):

39 - 179 d (15 °C); (least square method)

DT50lab (20 °C, anaerobic):

Not determined.
Extractable radioactivity: 60 - 74 % after 90 d

 

 

Field studies  (USA and UK)

 

DT50f from soil dissipation studies:

3 sites in USA - Multiple applications on cotton plants:
Not possible to estimate DT50f or DT90f values due to low residue levels in soil

2 sites in UK – bare soil, Summer and Autumn applications
estimated DT50f: 62 - 126 d. after Summer appl.

  : 68 – 87 d. after Autumn appl.

estimated DT90f: 206 – 420 d. after Summer appl.

  : 227 – 291 d. after Autumn appl.

(DT50f mean values: 70 d. in sandy silt loam and 95 d. in clay soil after Summer application; 75 d. in sandy silt loam and 77 d. in clay soil after Autumn application)

 

CONH2 Esf. < 0.01 mg/kg in all field dissipation studies

DT90f from soil dissipation studies:

Soil accumulation studies:

No studies have been submitted.
No accumulation is expected

Soil residue studies:

6 Residue trials in Germany
In 4 trials residues < 0.01 mg/kg
In 2 trials residues 0.03 - 0.04 mg/kg (at 0 d)
DT50f: 33 - 35 d (1st order)
DT90f: 109 - 117 d (estimated)

Remarks

 

e.g. effect of soil pH on degradation rate

The field dissipation studies in USA can be used for Southern part of EU.

Residues not detected below 10 cm of soil layer.

 

Adsorption/desorption

 

Kf / Koc:


 

Kd

 

 

 

 

pH dependence:

By HPLC: Log KOC 5.8 (5.3 - 6.6 for 95 % confidence ranges)
r2 for reference compounds = 0.93

 

For fenvalerate kd values:

Sand (pH 4.8, 0.35% o.m.): 4.4

Sandy loam (pH n.d., 1.06% o.m.): 6.4

Silty clay loam (pH 6.4, 2.00% o.m.): 71.3

Sandy clay loam (pH 7.0, 1.50% o.m.): 104.8

no pH dependence

 

 

Mobility

 

Laboratory studies:

No studies have been conducted with esfenvalerate, but only with fenvalerate.

Column leaching:

 

Fresh soils

Less than 2 % AR in percolates.

No identification has been done.

The majority of AR was recovered from the top soil column and:      > 98 % a.s.
                                or
                                43 % a.s. and
                                38 % CONH2-Fen.

Aged residue leaching:

Incubation 30 d

Approximately 1 % AR in percolate of sandy loam soil.

92 % AR in the top soil column: > 90 % a.s.
                                                     or
                                                 43 % a.s. and
                                                 35 % CONH2-Fen

 

 

Field studies:

                 

Lysimeter/Field leaching studies:

No studies have been submitted and are considered not necessary due to low mobility in soil from leaching studies

 

 

Remarks:

Although poor information has been submitted for esfenvalerate no mobility of this compound is expected as well as for the metabolites.

 

Fate and behaviour in water

Abiotic degradation

 

Hydrolytic degradation:

 

DT50 at

pH 4/5: 192 d at 25 °C

pH 7:   not calculated due to variability of results

pH 9:   65 d at 25 °C

Relevant metabolites:

Hydrolysis via cleavage of ester bond leading to CPIA

Photolytic degradation:

Natural sunlight at 25 °C:

Distilled water:            DT50: 10 d

Artificial sunlight:

Sterilised water:         DT50: 6 d

Relevant metabolites:

Esfenvalerate stereoisomerized to RS and SR isomers.

CPIA: 27 % by day 7

 

 

Biological degradation

 

Ready biological degradability:

 

Not submitted for esfenvalerate.
For fenvalerate: No biological degradability

Water/sediment study:


DT50 water:


DT90 water:


DT50 whole system:

DT90 whole system:

Distribution in water / sediment systems
(active substance)

Distribution in water / sediment systems
(metabolites)

1. Japanese pond and river sediment at 25 °C
2. UK natural aquatic systems at 10 °C

DT50 (water): Esfenvalerate 30.3 % at time 0
                        Esfenvalerate 2.7 - 3.4 % at 100 d

DT90 < 30 d

DT50 (whole system): 54 - 80 d

DT90 (whole system): 212 - 215 d

Esfenv. 26 – 27% at 100 d

 

CPIA:    44 – 48% at 100 d
Pbacid: 2 – 13% at 30 d

 

Accumulation in water and/or sediment:

Not necessary since esfenvalerate is not

persistent in aquatic systems.

 

The article of Samsoe-Petersen et al. (2001), Fate and effects of esfenvalerate in agricultural ponds (Environmental Toxicology and Chemistry 20: 1570-1578) has become available to Ctgb.

 

To make an improved description of the fate of esfenvalerate in natural, small surface waters only the study of Samsoe-Petersen et al. (2001) has been evaluated. Inverse modelling of TOXSWA input parameters has been undertaken in this study.

The description of the studied system in Samsoe-Petersen et al. (2001) and Bügel Mogensen and Stuer-Lauridsen (1996), both reporting on the same experiment, is not complete. Therefore lacking data on e.g. exact water depth, mass of macroflora present and sediment properties like bulk density, porosity and organic matter content had to be estimated by expert judgement.

The TOXSWA model was used in the calculations. Main limitations of this model with respect to the pond study are:

§         The water column is assumed to be ideally mixed over depth,

§         No surface micro layer can be simulated,

§         Sorption to suspended solids, macrophytes and sediment is described as an equilibrium process, and therefore  the model cannot describe time-dependent sorption during e.g. the first 24 h after application.

 

No site-specific compound properties were available. For less important properties (e.g. transformation in sediment, vapour pressure, solubility) values from the DAR of esfenvalerate were used. Next, the three most important properties were estimated by comparing measured concentrations with concentrations calculated by TOXSWA 1.2.

 

Results

The fate of esfenvalerate in the pond of  Samsoe-Petersen et al. (2001) is described best by assuming the following values for the physico-chemical properties mentioned below:

Kmp (sorption to macrophytes):                      20000 L/kg

DT50 in water column:                                    1 d

Kom (sorption to sediment and susp.solids:   30000 L/kg

DT50 in sediment:                                           67 d

 

Note that the value of Kom is of minor importance for the correct estimation of the exposure concentration in the water column. It does have importance for the correct estimation of the exposure concentration in the sediment.

 

Conclusion and recommendation

The use of (semi-)field experiments in small surface waters leads to an improved description of the behaviour of esfenvalerate in natural, small surface waters, that can be used to calculate exposure concentrations in higher tier risk assessments.

 

Degradation in the saturated zone

Not submitted. Not necessary.

 

 

Remarks:

No remarks

 

Fate and behaviour in air

Volatility

 

Vapour pressure:

1.17 x 10-9 Pa at 20şC (estimated)

Henry's law constant:

4.92 x 10-4 Pa·m3·mol-1 (calculated)

 

 

Photolytic degradation

 

Direct photolysis in air:

Not submitted.

Photochemical oxidative degradation in air

DT50:

DT50air: 1.2 days (Atkinson method)

Volatilisation:

Not submitted

 

 

Remarks:

Esfenvalerate is considered non-persistent in air.

 

6.1       Fate and behaviour in soil

6.1.1    Persistence in soil

The Board for the authorization of plant protection products and biocides in the Netherlands (Ctgb) has to evaluate persistence in compliance with the INS[1] method. The ‘decision tree’, has been laid down in the RIVM[2] report 601506008/2005: ‘Persistence of plant protection products in soil; a proposal for risk assessment.

However, this decision tree is currently still under development, which means that it cannot be put into practice immediately. The new procedure for the assessment of persistence of plant protection products for authorization will be implemented in the near future.

 

As long as the mentioned RIVM report has not been laid down by the competent authorities, the Ctgb will fall back on the tried and tested method which has hitherto been in use for evaluating applications for the authorization of plant protection products.

 

If for the evaluation of the product a higher tier risk assessment is necessary, a standard is to be set according to the MPC-INS method. This method is the same as the method described in the TGD to set a predicted no-effect concentration (PNEC).

 

For the current application this means the following:

 

Esfenvalerate

The following laboratory DT50 values are available for the active substance(s) esfenvalerate: 28 - 50 d, 26.9 - 74 d (25 °C), n=13, average 53 d (recalculated to 20°C). The mean DT50-value of the a.s. can thus be established to be <90 days. Furthermore it can be excluded that after 100 days there will be more than 70% of the initial dose present as bound (non-extractable) residues together with the formation of less than 5% of the initial dose as CO2.

In this way, the standards for persistence as laid down in the RGB are met.

 

The metabolite mI (CONH2-esfenvalerate) was found in one out of 13 studies in concentrations up to 32% AR in a USA silty clay loam soil after 12 months of incubation. Considering the overall results from the series of soil laboratory studies assessed in the DAR, in the DAR it is assumed that CONH2-esfenvalerate is probably not of environmental significance. However, since the metabolite has not been found in field studies in concentrations >0.01 mg/kg it is concluded that CONH2-esfenvalerate is not of environmental significance.

For this metabolite no DT50-values are available. However, since the metabolite has not been found in field studies in concentrations >0.01 mg/kg it is concluded that CONH2-esfenvalerate is not persistent in soil under normal use conditions.

Based on the above, the standards of persistence are met.

        

CONH2-esfenvalerate

 

 

PECsoil

The concentration of the a.s. in soil is needed to assess the risk for soil organisms (earthworms, micro-organisms). The PECsoil is calculated for the upper 5 cm of soil using a soil bulk density of 1500 kg/m3.

 

PEC soil:

 

Active substance:

Maximum lab/field DT50 for degradation in soil:  110 days

 

Molecular weight: 419.9 g/mol

 

See Table M.1 for other input values and results.

 

Table M.1 PECsoil calculations (5 cm (and 20 cm))

Use

Substance

Rate

[kg a.s./ha]

Freq.

Fraction on soil

PIECsoil 5 cm

[mg a.s./kg]

PECsoil 21 days

[mg a.s./kg]

Onions, shallots

esfenvalerate

0.005

3

0.3

0.006

0.006

 

These exposure concentrations are examined against ecotoxicological threshold values in section 7.5.2.

 

Risk assessment

Since esfenvalerate and its metabolite CONH2-esfenvalerate are not persistent in soil, no MPC needs to be derived and therefore no assessment on this point is needed.

 

6.1.2        Leaching to shallow groundwater

The leaching potential of the active substance (and metabolites) is calculated in the first tier using Pearl 2.2.2. and the FOCUS Kremsmünster scenario. Input variables are the actual worst-case application rate [0.005 kg/ha], the crop [onions] and an interception value appropriate to the crop of [0,7] (user defined, from FOCUS groundwater report). First date of yearly application is 25/05/1980 (default). For metabolites all available data concerning substance properties are regarded. Metabolite CONH2-esfenvalerate is included in the calculations. No other metabolites occurred above > 10 % of AR, > 5 % of AR at two consecutive sample points or had an increasing tendency.

No experimental Kom value is available. In the DAR a logKoc value of 5.8 (95%conf.int. 5.3 – 6.6) is reported based on HPLC measurements. Based on the lowest value a Kom is assumed of 117400 L/kg.

Also for metabolite CONH2-esfenvalerate no experimental Kom value is available. Calculations with PCKOCWIN (EPIWIN Suite) provided a Kom similar to the one derived for esfenvalerate.

 

The following input data are used for the calculation:

 

PEARL:

 

Active substance esfenvalerate:

Geometric mean DT50 for degradation in soil (20°C):  53 days

Arithmetric mean Kom (pH-independent): 117400 L/kg (based on HPLC measurements)

1/n: 1.07 (taken from the DAR)

 

Saturated vapour pressure: 1,17 · 10-9 Pa (20 °C)

Solubility in water: 0,001 mg/L (20 °C)

Molecular weight: 419,9 g/mol

 

Metabolite:

Geometric mean DT50 for degradation in soil (20°C):  53 days (no data, therefore as parent)

Arithmetric mean Kom (pH-independent): xxxx L/kg  (as parent based on PCKOCWIN calculations)

1/n: 1.07 (no data, therefore as parent)

 

Maximum fraction of occurrence: 0.32

 

Saturated vapour pressure: 1,17 · 10-9 Pa (no data, similar structure compared to parent therefore as parent)

Solubility in water: 0,001 mg/L (20 °C) (no data, similar structure compared to parent therefore as parent)

Molecular weight: 419,9 g/mol

 

Other parameters: standard settings of PEARL 2.2.2

 

The following concentrations are predicted for the a.s. esfenvalerate following the realistic worst case GAP, see Table M.2.

 

Table M.2 Leaching of a.s. esfenvalerate as predicted by PEARL 2.2.2

No./ Use

Substance

Rate substance [kg/ha]

Frequency

Interval [days]

Fraction

intercepted

PEC

groundwater [mg/L]

 

 

 

 

 

 

spring

autumn

Onions, shallots

Esfenvalerate

CONH2-esfenvalerate

0.005

0.0016

3

5

0.7

<0.001

<0.001

n.r.*

n.r.

* n.r.       :               not relevant application in June and July until BBCH 47.

 

Results of Pearl 2.2.2. using the Kremsmünster scenario are examined against the standard of 0.01 µg/L. This is the standard of 0.1 µg/L with an additional safety factor of 10 for vulnerable groundwater protection areas (NL-specific situation).

 

From Table M.2 it reads that the expected leaching based on the PEARL-model calculations for the a.s. esfenvalerate and its metabolite CONH2-esfenvalerate is  smaller than 0.01 µg/L for all proposed applications. Hence, the applications meet the standards for leaching.

 

Monitoring data

There are no data available regarding the presence of the substance esfenvalerate in groundwater.

 

Regarding the presence of metabolite CONH2-esfenvalerate no monitoring data are available.

 

Conclusions

The proposed application of the product complies with the requirements concerning persistence and leaching in soil.

 

6.2       Fate and behaviour in water

6.2.1    Rate and route of degradation in surface water

The exposure concentrations of the active substance esfenvalerate in surface water have been estimated for the various proposed uses using calculations of surface water concentrations (in a ditch of 30 cm depth), which originate from spray drift during application of the active substance. The spray drift percen­tage depends on the use. Concentrations in surface water are calculated using the model TOXSWA.

The input data are derived from the study of Samsoe-Petersen et al. (2001), which is discussed below:

 

To make an improved description of the fate of esfenvalerate in natural, small surface waters only the study of Samsoe-Petersen et al. (2001) has been evaluated. Inverse modelling of TOXSWA input parameters has been undertaken in this study.

The description of the studied system in Samsoe-Petersen et al. (2001) and Bügel Mogensen and Stuer-Lauridsen (1996), both reporting on the same experiment, is not complete. Therefore lacking data on e.g. exact water depth, mass of macroflora present and sediment properties like bulk density, porosity and organic matter content had to be estimated by expert judgement.

The TOXSWA model was used in the calculations. Main limitations of this model with respect to the pond study are:

§         The water column is assumed to be ideally mixed over depth,

§         No surface micro layer can be simulated,

§         Sorption to suspended solids, macrophytes and sediment is described as an equilibrium process, and therefore  the model cannot describe time-dependent sorption during e.g. the first 24 h after application.

 

No site-specific compound properties were available. For less important properties (e.g. transformation in sediment, vapour pressure, solubility) values from the DAR of esfenvalerate were used. Next, the three most important properties were estimated by comparing measured concentrations with concentrations calculated by TOXSWA 1.2. via inverse modelling.

 

Results

The fate of esfenvalerate in the pond of  Samsoe-Petersen et al. (2001) is described best by assuming the following values for the physico-chemical properties mentioned below:

Kmp (sorption to macrophytes):                      20000 L/kg

DT50 in water column:                                    1 d

Kom (sorption to sediment and susp.solids:   30000 L/kg

DT50 in sediment:                                           67 d

 

Note that the value of Kom is of minor importance for the correct estimation of the exposure concentration in the water column. It does have importance for the correct estimation of the exposure concentration in the sediment.

 

Conclusion and recommendation

The use of (semi-)field experiments in small surface waters leads to an improved description of the behaviour of esfenvalerate in natural, small surface waters, that can be used to calculate exposure concentrations in higher tier risk assessments.

 

The following input data are used for the calculation:

 

TOXSWA:

Active substance:

Mean DT50 for degradation in water at 20°C:  1 days

DT50 for degradation in sediment at 20°C: 67 days.

 

Mean Kom for suspended organic matter: 30000 L/kg

Mean Kom for sediment: 30000 L/kg

 

Saturated vapour pressure: 1.17 x 10-9 Pa (temperature dependent)

Solubility in water: 1 x 10-6 g/L (temperature dependent)

Molecular weight: 419.9 g/mol

 

Other parameters: standard settings TOXSWA

 

Because there is no standard method to determine separate degradation rates in water and sediment from the water/sediment study, the DT50 system is used for the water phase and degradation in the sediment is assumed to be zero, which is simulated using a DT50 value of 1000 days. This is the case with standard laboratory water/sediment studies. The values derived in the study of Samsoe-Petersen et al. (2001) have been recalculated by inverse modelling using the TOXWA 1.2 model.

Although the metabolites CPIA and Pbacid appeared in water/sediment studies at levels >10% no PECsw calculations have been performed for these metabolites. The possible effects of the metabolites are considered to be covered by the mesocosm studies which are described in the DAR and used for the risk assessment for aquatic organisms in section 7.2. Therefore no separate PECsw and PECsed values for the metabolites CPIA and Pbacid are needed.

 

In Table M.3, the drift percentages and calculated surface water concentrations for the active substance esfenvalerate for each intended use are presented.

 

Table M.3 Overview of surface water concentrations for active substance and metabolite(s) following spring and autumn application

Use

Substance

Rate a.s.

[kg/ha]

Freq.

Inter-val

Drift

[%]

PIEC

[mg/L] *

PEC21

[mg/L] *

PEC28

[mg/L] *

 

 

 

 

 

 

Spring

Spring

Spring

Onions, shallots

Esfenvalerate

 

0.005

3

5

0.51

0.0097

0.0031

0.0024

* calculated according to TOXSWA

1          :           75% spray drift reduction by means of spray drift reducing nozzles.

 

PECsediment

To address the risk to sediment organisms, a PEC sediment value is needed for esfenvalerate.

The PECsediment values calculated with TOXSWA are expressed in g a.s./m3 sediment. This PECsed has to be converted to mg a.s./kg sed dw by dividing it by the dry bulk density.

It is assumed that the substance will be present mainly in the top 1 cm layer. This layer has a density of 80 kg/m3. The maximum PEC value in sediment in the top 1 cm of sediment is reached at day 18 after application. See Table M.3b for calculation of PECsediment.

 


 

Table M.3b Maximum sediment concentration for active substance [name] following spring application (worst-case)

Use

Substance

Rate a.s.

[kg/ha]

drift

[%]

PECsediment

[g a.s./m3 sediment] *

PECsediment

[mg a.s./kg sediment dw]**

 

 

 

 

spring

spring

Onions, shallots

esfenvalerate

0.005

0.5

4.33*10-4

0.0054

* TOXSWA output 

** calculated as (PECsed in g/m3 / 80 kg/m3)*1000 (conversion of g/kg to mg/kg)

 

The exposure concentrations in surface water and sediment are compared to the ecotoxicological threshold values in section 7.2.

 

Monitoring data

There are no data available regarding the presence of the substance esfenvalerate in surface water.

 

Drinking water criterion

It follows from the decision of the Court of Appeal on Trade and Industry of 19 August 2005 (Awb 04/37 (General Administrative Law Act)) that when considering an application, the Ctgb should, on the basis of the scientific and technical knowledge and taking into account the data submitted with the application, also judge the application according to the drinking water criterion ‘surface water intended for drinking water production’. No mathematical model for this aspect is available. This means that any data that is available cannot be adequately taken into account. It is therefore not possible to arrive at a scientifically well-founded assessment according to this criterion. The Ctgb has not been given the instruments for testing surface water from which drinking water is produced according to the drinking water criterion. In order to comply with the Court’s decision, however - from which it can be concluded that the Ctgb should make an effort to give an opinion on this point – and as provisional measure, to avoid a situation where no authorisation at all can be granted during the development of a model generation of the data necessary, the Ctgb has investigated whether the product under consideration and the active substance could give cause for concern about the drinking water criterion.

 

Esfenvalerate has been on the Dutch market for > 3 years (authorised since 15-02-1989). This period is sufficiently large to consider the market share to be established. From the general scientific knowledge collected by the Ctgb about the product and its active substance, the Ctgb concludes that there are in this case no concrete indications for concern about the consequences of this product for surface water from which drinking water is produced, when used in compliance with the directions for use. The Ctgb does under this approach expect no exceeding of the drinking water criterion. The standards for surface water destined for the production of drinking water are met.

 

6.3       Fate and behaviour in air

Route and rate of degradation in air

Esfenvalerate

The vapour pressure is 1.17 x 10-9  Pa at 20°C. The Henry constant is 4.29 * 10-9 pa.m3.mol-1 at 20°C. The half-life in air is 1.2 days.

 

6.4       Appropriate fate and behaviour end-points relating to the product and approved uses

See List of Endpoints.

 

6.5       Data requirements

None.

 

In the GAP/instructions for use the following has to be stated:

None.

 

6.6       Overall conclusions fate and behaviour

It can be concluded that:

  1. the active substance esfenvalerate meets the standards for per­sis­tence in soil.
  2. metabolite CONH2-esfenvalerate meets the standards for per­sis­tence in soil.
  3. all proposed applications of the active substance esfenvalerate meet the standards for leaching to the shallow groundwater.
  4. all proposed applications of metabolite CONH2-esfenvalerate meet the standards for leaching to shallow groundwater.
  5. all proposed applications of the active substance esfenvalerate meet the standards for surface water destined for the production of drinking water.

 

 

  1. Ecotoxicology

 

Risk assessment is done in accordance with HTB 1.0 for products based on
- active substances which have already been placed on Annex I of Directive 91/414/EEC

- “new” active substances;

for other plant protection products, HTB 0.2 applies.

This means that for the current application of Sumicidin Super, risk assessment is done in accordance with HTB 1.0.

 

Esfenvalerate is listed on Annex I of Directive 91/414/EEC since August 1st 2001.The re-registration in The Netherlands was completed with the decision in C-167.3.2 (20040072 THG) d.d. 3th of March 2006. In the re-registration process the use in onions and shallots was withdrawn from the label based on the residues assessment. This assessment is mainly based on the assessment in C-167.3.2. The List of Endpoints for ecotoxicology is dated 11th July 2000.

 

List of Endpoints Ecotoxicology

 

Terrestrial Vertebrates

Acute toxicity to mammals:

LD50 = 7.9 mg a.s./kg bw (Rat - EC formulation)

Acute toxicity to birds:

LD50 = 1312 mg a.s./kg bw (Bobwhite quail)

Dietary toxicity to birds:

LC50 > 5000 ppm (Bobwhite quail/Mallard duck -

                             fenvalerate)

Reproductive toxicity to birds:

NOEC: 125 ppm (Bobwhite quail – fenvalerate)

             25 ppm (Mallard duck – fenvalerate)

Short term oral toxicity to mammals:

 

2-Generation reproduction to mammals:

LD50 = 88.5 mg/kg bw (Rat – technical
           esfenvalerate)

NOAEL = 2 mg/kg bw/d ~ 30 mg/kg feed

 

Aquatic Organisms

Acute toxicity fish:

LC50 = 0.1 µg/l

Long term toxicity fish:

NOEC = 0.25 µg/l (mesocosm studies)

ELS: 0.001µg/L (DAR)

FLC: 0.09 µg/L (DAR)

Bioaccumulation fish:

BCF: 2850 – 3650

Acute toxicity invertebrate:

EC50 = 0.9 µg/l

Chronic toxicity invertebrate:

NOEC = 0.052 µg/l;

From mesocosm studies:

EAC = 0.08 µg/l (overall conclusion from 3 mesocosm studies; long term effects were not observed for microcrustaceans);

NOEC(community) = 0.01 µg/l (very slight effects)

These three mesocosm studies are not included in the DAR, but are described in detail in the Addendum to Esfenvalerate (doc 7753/VI/97 rev.1 d.d. 20th September 1998, available only as hard copy in the EU dossier

*Taken  from the reporting table Doc. 7753/VI/97-rev 9.1 (16.05.00):

The two additional submitted mesocosm studies satisfactorily address the issues raised by ECCO concerning effects on fish and cladocerans and potential effects from the primary metabolites CPIA and PBacid at realistic and ”worst case” exposure levels.

Acute toxicity algae:

EbC50 = 6.5 µg/l; ErC50 = 10.0 µg/l

Chronic toxicity sediment dwelling organism:

Covered by mesocosm studies.

 

Honeybees

Acute oral toxicity:

0.21 µg a.s./bee (EC formulation)

Acute contact toxicity:

0.06 µg a.s./bee; 0.07 µg a.s./bee (EC formulation)

Semi-Field/Field studies:

Cage tests, tunnel cage tests and a field trial on oil seed rape were conducted.

On the basis of the results it can be concluded that applications up to 30 g a.s./ha will not pose an unacceptable risk to honey bees. A high dose of 60 g a.s./ha was also tested with similar results concerning bee mortality of those observed with 15 and 30 g a.s./ha.

Repellence was observed for 1 – 5 h, depending on the tested concentration.

 

Other arthropod species

Liniphiid spiders

Mortality: 100 % adverse effects on adults
(0.0125 kg a.s./ha, EC 50 g/l)

T.pyri (ext-lab)

overall adverse effects (mortal./reprod.) of 10%, 48.8%, 46.3%, 58.9% and 90.7% resp. for 0.015, 0.027, 0.047, 0.084 and 0.15 kg a.s./ha.

C. carnea

Mortality: 10 % adverse effect on larvae
(0.0125 kg a.s./ha, EC)

P. cupreus

Lethal/sublethal adverse effects: 3.3 % in adults
(0.0125 kg a.s./ha, EC)

Field study in cereals, summer application

 

EC form. 50 g a.s./l, two applications at 7.5 and 15 g a.s./ha.

Transient and short lived effects on Lycosiidae, Hybotidae (Diptera) and Aphidiinae. No significant effects on Carabidae and Staphylinidae beatles.

Recovery after three weeks.

Field study in Orchards (South of France), summer application

EC form. 50 g s.a./l; three applications at two week intervals at 1.5 (10% Max. Field Rate corresp. to drift at 5 m), 7.5 and 15 g a.s./ha (MFR). Observations before 1st application until 114DA3T.

No treatment related effects on predatory mites or other beneficials at 1.5 g a.s./ha.

At 7.5 g a.s./ha, 25 to 35% reduction of mite abundance was observed after treatments. Dose related effects were also observed on aphid predators and parasitoids.

At 15 g a.s./ha 22 to 43% reduction of mite abundance was observed after treatments. Dose related effects were also observed on aphid predators and parasitoids. Other predators showed reduction only for this dose.

Recovery was evident at 30DAT for all species studied for both 7.5 and 15.0 g a.s./ha.

Adverse effect means:

x % effect on mortality = x % increase of mortality compared to control

y % effect on a sublethal parameter = y % decrease of sublethal parameter compared to control

(sublethal parameters are e.g. reproduction, parasitism, food consumption)

 

When effects are favourable for the test organisms, a + sign is used for the sublethal effect percentages (i.e. increase of e.g. reproduction) and a – sign for mortality effect percentages (i.e. decrease of mortality).

 

 

Earthworms

Acute toxicity:

212.5 mg formulation/kg substrate

(10.6 mg a.s./kg substrate)

Reproductive toxicity:

No data submitted. No long term effects expected.

New submitted data (10/2005)

NOEC: 1.1 mg a.s./kg substrate

 

Soil micro-organisms

Nitrogen mineralization:

No permanent adverse effect up to 1.28 kg/ha

Dehydrogenase activity:

Considered acceptable test for assessing effects on biomass of soil microflora.

No permanent adverse effect up to 1.28 kg/ha.

 

 

Additional data (10/2005):

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism

endpoint

Activated sludge

EC50 for respiration > 1000 mg a.s./L

 

Remarks: Guideline OECD 209 is most readily applied to substances which, due to their water solubility and low volatility, are likely to remain in water. In this case the water solubility is very low in respect to the test concentrations. No data are available in order to determine if the test item was well distributed in the test vessels. Therefore it could be questioned if the test result should be expressed as being over the water solubility of the compound esfenvalerate (EC50 > 0.01 mg/L). It is suggested that in case of poorly soluble compounds the test is performed with the formulation under application for which the data have to be generated.

The formulation provides higher solubility of the compound to be tested, thus giving a more realistic value. It should be noted here that there is no guidance yet for this kind of test with the formulation. Therefore the current test result is accepted.

 

Additional data (02/2009; summarized and evaluated by the Ctgb):

Effects on non-target plants

Test type/organism

endpoint

Soybean (Glycine max)

Lettuce (Lactuca sativa)

Cabbage (Brassica oleracea)

Tomato (Lycopersicon esculentum)

Onion (Allium cepa)

Oat (Avena sativa)

ER50 for biomass > 30 g a.s./ha

(test was performed with Sumi-Alpha 5 EC, 5% esfenvalerate)

 

Relevance of metabolites:

Soil:

The metabolite mI (CONH2-esfenvalerate) was found in one out of 13 laboratory studies in concentrations up to 32% AR in a USA silty clay loam soil after 12 months of incubation. However, since the metabolite has not been found in field studies in concentrations >0.01 mg/kg it is concluded that CONH2-esfenvalerate is not of environmental significance.

 

Water/sediment:

Although the metabolites CPIA and Pbacid appeared in water/sediment studies at levels >10% no PECsw calculations have been performed for these metabolites. The possible effects of the metabolites are considered to be covered by the mesocosm studies which are described in the DAR and used for the risk assessment for aquatic organisms in section 7.2. Therefore no separate risk assessment for the metabolites CPIA and Pbacid is needed.

 

7.1       Effects on birds

Birds can be exposed to the active substance esfenvalerate via natural food (sprayed insects, seeds, leafs), drinking water and as a result of secondary poisoning.

 

The threshold value for acute and short-term exposure for birds is set at 0.1 times the LD50 and LC50 value, and the threshold value for chronic exposure is set at 0.2 times the NOEC value. This means that TERs (Toxicity-Exposure Ratio’s) for acute and short-term exposure should be ł 10 and TER for chronic exposure should be ł 5.

Table E.1 presents an overview of toxicity data.

 

Table E.1 Overview of toxicity data for birds for substance esfenvalerate

 

Endpoint

Value

Acute toxicity to birds:

LD50

1312 mg a.s./kg bw

Dietary toxicity to birds:

LC50

 >5000 ppm = >1750 mg a.s./kg bw/d1

Reproductive toxicity to birds:

NOEL

25 ppm =  3.75 mg a.s./kg bw/d2

1           :conversion factor 0.35 according to HTB 1.0

2           :conversion factor 0.15 according to HTB 1.0

 

7.1.1    Natural food and drinking water

Sprayed products

Procedures for risk assessment for birds comply with the recommendations in the Guidance Document on Risk Assessment for Birds and Mammals under Council Directive 91/414/EEC (Sanco/4145/2000).

For the current application, uses can be categorized as leafy crops. Depending on the crop category, different indicator species are chosen. Table E.2  shows which indicator species are relevant for which uses.

 

Table E.2 Indicator species per use

No.

Use

Crop

Indicator species

1

Onions (sown and planted) and shallots

Leafy crops (early/late)

medium herbivorous and insectivorous

 

Table E.3a-c shows the estimated daily uptake values (ETE, Estimated Theoretical Exposure) of esfenvalerate for acute, short-term and long-term exposure, using the Food Intake Rate of the indicator species (FIR) divided by the body weight of the indicator species (bw), the Residue per Unit Dose (RUD), a time-weighted-average factor (fTWA, only for long term) and the application rate. For uses with frequency of > 1, a MAF (Multiple Application Factor) may be applicable. The ETE is calculated as application rate * (FIR/bw) * RUD * MAF * fTWA, only for long term.

 

Table E.3a Acute ETE in terms of daily dose (mg/kg bw) for esfenvalerate

Crop (uses no.)

Crop stage

Indicator species

FIR / bw

RUD (90%)

MAF

Application rate

(kg as/ha)

Acute ETE

(mg/kg bw/d)

Onions (sown and planted) and shallots

Early/ late

Medium herbivorous bird

0.76

87

1.7*

0.005

0.562

 

 

Insectivorous bird (small insects)

1.04

52

-

0.005

0.270

* This MAF value is based on an interval between applications of 7 days. Based on the use pattern applied for with an interval of 5 days the MAF is higher, but the actual value is not known. Based on the high acute TER calculated in table E.4 for the interval of 7 days a potential risk for the interval of 5 days can be excluded.

 

 

Table E.3b Short-term ETE in terms of daily dose (mg/kg bw) for esfenvalerate

Crop (uses no.)

Crop stage

Indicator species

FIR / bw

RUD (mean)

MAF

Application rate (kg as/ha)

Short-term ETE

(mg/kg bw/d)

Onions (sown and planted) and shallots

Early/ late

Large herbivorous bird

0.76

40

2.2

0.005

0.334

 

 

Insectivorous bird (small insects)

1.04

29

-

0.005

0.151

 


 

Table E.3c Long-term ETE in terms of daily dose (mg/kg bw) for esfenvalerate

Crop (uses no.)

Crop stage

Indicator species

FIR / bw

RUD (mean)

MAF

fTWA

Application rate (kg as/ha)

Long-term ETE

(mg/kg bw/d)

Onions (sown and planted) and shallots

Early/ late

Large herbivorous bird

0.76

40

2.2

0.53

0.005

0.177

 

 

Insectivorous bird (small insects)

1.04

29

-

-

0.005

0.151

 

Based on the ETE-values in Table E.3a-c the TER-values for the acute, short-term and long-term risk are presented in table E.4. Only the highest ETE’s are used, as a worst case approach.

 

Table E.4 Toxicity Exposure Ratios for exposure of birds to esfenvalerate in food

Time scale

Substance

Toxicity (LD50/ LC50/ NOEL)

ETE value

(mg a.s./kg bw/d)

TER value

Trigger value

Crop: Onions (sown and planted) and shallots 0.005 kg a.s./ha (use 1)

Acute

esfenvalerate

1312

0.562

2334

10

Short-term

esfenvalerate

>1750

0.304

5233

10

Long-term

esfenvalerate

3.75

0.161

21.2

5

 

Taking the results in Table E.4 into account, it appears that all proposed uses meet the standards.

 

drinking water

The risk from exposure through drinking surface water is calculated for a small bird with body weight 10 g and a DWI (daily water intake) of 2.7 g/d. Surface water concentrations are calculated using TOXSWA (see paragraph 6.2.1). In the first instance, acute exposure is taken into account. The highest PIECwater is 0.0194 mg/L. It follows that the risk of drinking water is (LD50 * bw) / (PIEC*DWI) = (1312 * 0.010) / (0.0194 * 0.0027) = 250477.

Since TER ł 10, the risk is acceptable. 

 

7.1.2    Secondary poisoning

The risk as a result of secondary poisoning is assessed based on bioconcentration in fish and worms.

 

Examination takes place against the threshold value for chronic exposure of 0.2 times the NOEC value. This means that the TER should be ł 5.

 

Fish

Esfenvalerate

For esfenvalerate a BCF of 3650 L/kg is available.

 

The highest PECwater(21)  (taken from paragraph 6.2.1.) is reached at the use in onions and amounts 0.0061 mg/L = 0.0000061 mg/L. 

Indicator species is a 1000-g bird eating 206 g fresh fish per day.

The TER is then calculated as NOEL / (PECwater(21)  * BCFfish * (FIR/bw) = 3.75 / (0.0000061 * 3650 * 0.21) = 802. Since this is ł 5, the risk for birds as a result of consumption of contaminated fish is considered to be small.

 

Earthworms

Esfenvalerate

Since there are no experimental data the bioconcentration factor for earthworms (BCFworm) is calculated according to the following formula: BCF = (0.84 + 0.01 * Kow) / foc * Koc.

The logKow of esfenvalerate is 6.24, the Kom is 117400L/kg, which leads to a BCFworm = 4.35 kg soil/kg worm.

The highest PECsoil(21) taken from paragraph 6.1.1) is reached at the use in onions (sown and planted) and shallots and amounts 0.006 mg/kg soil. 

Indicator species is a 100-g bird eating 113 g fresh worms per day.

The risk is then calculated as NOEL / PECsoil(21)  * BCFworm * (FIR/bw) = 3.75 / (0.006 * 4.35 * 1.1) = 131. Since this is ł 5, the risk for birds as a result of consumption of contaminated worms is considered to be small.

 

Conclusions birds

The product meets the standards.

 

7.2       Effects on aquatic organisms

7.2.1    Aquatic organisms

The risk for aquatic organisms for the various uses of the active substance esfenvalerate is assessed by comparing toxicity values with surface water exposure concentrations from section 6.2. Risk assessment is based on toxicity-exposure ratio’s (TERs).

Toxicity data for aquatic organisms are presented in Table E.5 for the active substance esfenvalerate.

 

See Table E.5 for the acute and chronic toxicity values to be used in the risk assessment.

 

Table E.5 Overview toxicity endpoints for the active substance

Substance

Organism

Lowest

Toxicity value

 

 

L(E)C50 [mg/L]

NOEC

[mg/L]

[mg/L]

esfenvalerate

Acute

 

 

 

 

Algae

0.0065

 

6.5

 

Daphnids

0.0009

 

0.9

 

Fish

0.0001

 

0.1

 

Macrophytes

 

 

 

 

Chronic

 

 

 

 

Daphnids

 

0.000052

0.052

 

Fish

 

0.00025

0.25

 

These toxicity values are compared to the surface water concentrations calculated in section 6.2. Trigger values for acute exposure are 100 for daphnids and fish (0.01 times the lowest L(E)C50-value) and 10 for algae (0.1 times the lowest EC50-value). Trigger values for chronic exposure are 10 for daphnids and fish (0.1 times the lowest NOEC-values).

For acute and chronic risk, the initial concentration is used (PIEC).  

In Table E.6 TER values for aquatic organisms are shown.

 

Table E.6a TER values for active substance esfenvalerate: acute

Use

 

Substance

TERst

(trigger 10)

TERst

(trigger 100)

TERst

(trigger 100)

 

 

Algae

Daphnid

Fish

 

 

spring

spring

spring

Onion, shallot

esfenvalerate

670

92.8

10.3

 

Table E.6b TER values for active substance esfenvalerate: chronic

Use

 

Substance

TERlt

(trigger 10)

TERlt

(trigger 10)

 

 

Daphnid

Fish

 

 

spring

Spring

Onion, shallot

esfenvalerate

5.36

25.8

 

Taking the results in Table E.6a and b into account, the acute TERs for algae are above the relevant Annex VI triggers of 10. The chronic TERs for fish are above the relevant Annex VI triggers of 10.

The acute TERs for fish and daphnia are below the relevant Annex VI triggers of 100. The chronic TERs for daphnia are below the relevant Annex VI triggers of 10. Thus, it appears that for the active substance esfenvalerate for the proposed uses a risk for aquatic organisms cannot be excluded. Therefore, an adequate risk assessment (e.g., higher tier studies) should be provided.

 

Higher tier risk assessment (refinement of the risk assessment)

From mesocosm studies the following EAC = 0.08 µg/l is available (overall conclusion from 3 mesocosm studies; long term effects were not observed for micro crustaceans);

NOEC(community) = 0.01 µg/l (very slight effects). For two of the mesocosm studies no information is available on experimental setup (see additional information included in the List of Endpoints), for one study (Krueger et al., 1990) is well described. The artificial ponds that were used were colonised with zooplankton and macro invertebrates and stocked with Bluegill sunfish (Lepomis macrochirus). Exposure to esfenvalerate was as follows: maximum application rate of 57 g a.i./ha, frequency = 10 and interval = 7 days. No treatment related effects were observed for fish

Since the EAC is based on three mesocosm studies no additional safety factor is needed. Therefore, the trigger value applicable is 1.

Comparing the EAC to the surface water concentrations calculated in section 6.2 results in the following TER values, see table E.7.

 

Table E.7 TER values based on the EAC of 0.08 μg/L for active substance esfenvalerate: acute and chronic

No./use

Substance

TERst

TERst

TERlt

 

 

(trigger 1)

(trigger 1)

(trigger 1)

 

 

acute

acute

chronic

 

 

Daphnid

Fish

Daphnid

 

 

spring

spring

spring

Onion, shallot

esfenvalerate

8.25

8.25

8.25

 

Since all TER values are above the trigger value of 1, it appears that all proposed uses meet the standards.

 

7.2.2    Risk assessment for bioconcentration

For the active substance a BCF-value of 3650 L/kg is available. 

Since the BCF is above 1000 L/kg and the substance esfenvalerate is not ready biodegradable, there is a risk for bioconcentration.

According to the guidance document on aquatic ecotoxicology the following points should be checked:

1)      Direct long-term effects in fish due to bioconcentration;

2)      Secondary poisoning for birds and mammals;

3)      Biomagnification in aquatic food chains

Ad 1) An ELS study should be available if 100 < BCF < 1000 and EC50 a.s. < 0.1 mg/L. A FLS should be available if BCF > 1000. These triggers are exceeded for esfenvalerate. An FLS study is not available.

Ad 2) From the assessment of birds and mammals it appears that there is no risk on secondary poisoning through fish.

Ad 3) The BCF > 1000 and the elimination in the BCF study within 14 days < 95% and the DT90 water > 100 days). These triggers are not exceeded. Taken from the DAR (Ohkawa, H. et al., 1980): about 87% of the incorporated [14C] was eliminated from the fish body during the depuration period.

 

Hence, it has to be demonstrated by means of an adequate risk assessment (Fish Full Lifecycle Study, (FLS study)) that no unacceptable direct or indirect effects on aquatic organisms and organisms depending on aquatic ecosystems after application of the formulation according to the proposed instructions for use.

 

As concluded before, a risk assessment based on an ELS or FLC test should be performed.

An ELS and an FLC test are available, although Ctgb erroneously concluded in the previous assessment that they were not. The studies were included in the DAR and considered acceptable in the EU process. To avoid confusion, these endpoints are now also included in the LOEP.

The NOEC from the juvenile growth test from the DAR was 0.001 µg/L (Salmo gairdneri), the FLC test from the DAR obtains a NOEC of 0.09 µg/L. When this is set against the PIEC in water of 0.0097 µg/L, the TER is 0.103 based on the juvenile growth test and 9.27 based on the FLC test. This indicates a possible concern for fish. However, several mesocosm studies were submitted during the EU review. The NOEC from the LoEP of 0.25 µg/L for fish is based on these mesocosm studies. Both young and adult fish were exposed, for longer periods of time up to 7.5 months. Mostly bluegills were exposed but in one test also fathead minnow was included. Since long-time exposure took place and some sublethal effects were also taken into account, it is considered that the overall NOEC from these studies can be used for the refined assessment for bioconcentration. From the risk assessment in Table E.6b it appears that even with a trigger of 10, which is the standard safety factor in the first tier risk assessment, the risk is acceptable. Therefore the risk for bioconcentration is also considered acceptable.

 

7.2.3    Risk assessment for sediment organisms

Since the water–sediment study indicates that over 10% of the a.s. esfenvalerate is found in the sediment after 14 days  and the NOEC for daphnids is below 0.1 mg/L, there is a potential risk for sediment organisms.  The chronic risk for sediment organisms is considered covered by mesocosm studies. Therefore, the EAC value for Chironomus is 0.08 µg/L. When this value is examined against the PIEC in water, the TER value is 8.25 and the trigger value of 1 is not exceeded. Therefore, the active substance esfenvalerate meets the standards for sediment organisms.

 

Conclusions aquatic organisms

The proposed application of the product meet the standards for aquatic organisms.

 

7.3       Effects on terrestrial vertebrates other than birds

Mammals can be exposed to the active substance esfenvalerate via natural food (sprayed insects, seeds, leafs), drinking water and as a result of secondary poisoning.

 

The threshold value for acute exposure for mammals is set at 0.1 times the LD50 value, and the threshold value for chronic exposure is set at 0.2 times the NOEC value. This means that TER (Toxicity-Exposure Ratio) for acute exposure should be ł 10 and TER for chronic exposure should be ł 5. Dietary toxicity is not taken into account for mammals.

Table E.8 presents an overview of toxicity data.

 

Table E.8 Overview of toxicity data for mammals for substance esfenvalerate

 

Endpoint

Value

Acute toxicity to mammals:

LD50

7.9 mg a.s./kg bw

Reproductive toxicity to mammals:

NOEL

2 mg a.s./kg bw/d

 

7.3.1    Natural food and drinking water

Sprayed products

Procedures for risk assessment for mammals comply with the recommendations in the Guidance Document on Risk Assessment for Birds and Mammals under Council Directive 91/414/EEC (Sanco/4145/2000).

For the current application, uses can be categorized as [grassland/cereals/leafy crops/orchard, vine, hops]. Depending on the crop category different indicator species are chosen. Table E.9 shows which indicator species are relevant for which uses.

 

Table E.9 Indicator species per use

No.

Use

Crop

Indicator species

1

Onions (sown and planted) and shallots

Leafy crops (early/late)

medium herbivorous

 

Table E.10a-b show the estimated daily uptake values (ETE, Estimated Theoretical Exposure) of esfenvalerate for acute and long-term exposure, using the Food Intake Rate of the indicator species (FIR) divided by the body weight of the indicator species (bw), the Residue per Unit Dose (RUD), a time-weighted-average factor (fTWA, only for long term) and the application rate. For uses with frequency of > 1, a MAF (Multiple Application Factor) may be applicable.

 

Table E.10a Acute ETE in terms of daily dose (mg/kg bw) for esfenvalerate

Crop (uses no.)

Crop stage

Indicator species

FIR / bw

RUD (90%)

MAF

Application rate (kg as/ha)

Acute ETE

(mg/kg bw/d)

Leafy crops (1)

Early/

late

medium herbivorous mammal

0.28

87

1.7*

0.005

0.207

* This MAF value is based on an interval between applications of 7 days. Based on the use pattern applied for with an interval of 5 days the MAF is higher, but the actual value is not known. Based on the high acute TER calculated in table E.11 for the interval of 7 days a potential risk for the interval of 5 days can be excluded.


 

Table E.10b Long-term ETE in terms of daily dose (mg/kg bw) for esfenvalerate

Crop (uses no.)

Crop stage

Indicator species

FIR / bw

RUD (mean)

MAF

fTWA

Application rate (kg as/ha)

Long-term ETE

(mg/kg bw/d)

Leafy crops

(1)

Early/

late

medium herbivorous mammal

0.28

40

2.2

0.53

0.005

0.059

 

Based on the ETE-values in Table E.10a-b the TER-values for the acute and long-term risk are presented in table E.11. Only the highest ETE’s are used, as a worst-case approach.

 

Table E.11 Toxicity Exposure Ratios for exposure of mammals to esfenvalerate in food

Time scale

Substance

Toxicity (LD50/NOEL)

ETE value  (mg a.s./kg diet/bw/d)

TER value

Trigger value

Crop: Onions (sown and planted) and shallots 0.005 kg a.s./ha (use 1)

Acute

esfenvalerate

7.9

0.207

38.2

10

Long-term

esfenvalerate

2

0.059

33.9

5

 

Taking the results in Table E.11 into account, it appears that all proposed uses meet the standards.

 

drinking water

The risk from exposure through drinking from surface water is calculated for a small mammal with body weight 10 g and a DWI (daily water intake) of 1.57 g/d. Surface water concentrations are calculated using TOXSWA (see paragraph 6.2.1). In the first instance, acute exposure is taken into account. The highest PIECwater is 0.0194 mg/L. It follows that the risk of drinking water is (LD50 * bw) / (PIEC*DWI) = (7.9 * 0.010) / (0.0000194 * 0.00157) = 2593736.

Since TER ł 10, the risk is acceptable. 

 

7.3.2    Secondary poisoning

The risk as a result of secondary poisoning is assessed based on bioconcentration in fish and worms.

Examination takes place against the threshold value for chronic exposure of 0.2 times the NOEC value. This means that the TER should be ł 5.

 

Fish

Esfenvalerate

For esfenvalerate a BCF of 3650 L/kg is available.

The highest PECwater(21)  (taken from paragraph 6.2.1.) is reached at the use in onions (sown and planted) and shallots and amounts 0.0061 mg/L = 0.0000061 mg/L. 

Indicator species is a 3000-g mammal eating 390 g fresh fish per day.

The TER is then calculated as NOEL / (PECwater(21)  * BCFfish * (FIR/bw) = 2 / (0.0000061 * 3650 * 0.13) = 691. Since this is ł 5, the risk for mammals as a result of consumption of contaminated fish is considered to be small.

 

Earthworms

Esfenvalerate

Since there are no experimental data the bioconcentration factor for earthworms (BCFworm) is calculated according to the following formula: BCF = (0.84 + 0.01 * Kow) / foc * Koc.

The logKow of esfenvalerate is 6.24, the Kom is 117400L/kg, which leads to a BCFworm = 4.35 kg soil/kg worm. 

The highest PECsoil(21) taken from paragraph 6.1.1) is reached at the use in onions (sown and planted) and shallots and amounts 0.006 mg/kg soil. 

Indicator species is a 10-g mammal eating 14 g fresh worms per day.

The risk is then calculated as NOEL / PECsoil(21)  * BCFworm * (FIR/bw) = 2 / (0.006 * 4.35 * 1.4) = 54.7. Since this is > 5, the risk for mammals as a result of consumption of contaminated worms is considered to be small.

 

Taking the results for secondary poisoning through fish and earthworms into account, the proposed use meets the standards for secondary poisoning.

 

Conclusions mammals

The product meets the standards.

 

7.4       Effects on bees

The risk assessment for bees is based on the ratio between the highest single application rate and toxicity endpoint (LD50 value). An overview of the risk at the proposed uses is given in Table E.12.

 

Table E.12 Risk for bees

Use

Substance

Application rate

LD50

Rate/LD50

Trigger value

 

 

[g a.s./ha]

[µg/bee]

 

 

Onion, shallot

Esfenvalerate

5

0.06

83.3

50

 

Since the ratio rate/LD50 is above 50, there is a potential (-ly high) risk for bees. Hence, all proposed uses do not meet the standards for bees and bumblebees. A cage and/or field study is required.

 

Refinement of the risk assessment (higher tier)

Cage tests, tunnel cage tests and a field trial on oil seed rape were conducted.

On the basis of the results it can be concluded that applications up to 30 g a.s./ha will not pose an unacceptable risk to honey bees. A high dose of 60 g a.s./ha was also tested with similar results concerning bee mortality of those observed with 15 and 30 g a.s./ha.

Repellence was observed for 1 – 5 h, depending on the tested concentration.

Therefore, the active substance esfenvalerate meets the standards for bees.

 

Conclusions bees

The product meets the standards.

 

7.5       Effects on any other organisms (see annex IIIA 10.5-10.8)

7.5.1    Effects on non-target arthropods

First tier: standard laboratory tests

 

Standard species Aphidius rhopalosiphi and Typhlodromus pyri

The risk for non-target arthopods is assessed by calculating Hazard Quotients. For  this, Lethal Rate values (LR50) are needed. Based on LR50-values from studies with the two standard species Aphidius rhopalosiphi and Typhlodromus pyri an in-field and an off-field Hazard Quotient (HQ) can be calculated according to the assessment method established in the SETAC/ESCORT 2 workshop and described in the HTB (v 1.0). In the first tier, Hazard Quotients should be below the trigger value of 2 to meet the standards. For Aphidius rhopalosiphi and Typhlodromus pyri no laboratory tests are available an therefore above an in-field (and off-field) risk for non-target arthropods cannot be excluded. Higher tier studies are therefore required.

An extended laboratory test for T. pyri has been provided, which is discussed below.

For A. rhopalosiphi data are available from a field study with summer application in cereals, which is also discussed below.

 

Additional species

Soil-dwelling non-target arthropods

For Liniphiid spiders and Poecilus cupreus studies are available.

The study with Liniphiid spiders showed 100% mortality of adult spiders at a dose rate of 0.0125 kg a.s./ha. Therefore, a risk for Liniphiid spiders cannot be excluded. Higher tier studies are therefore required.

For Liniphiid spiders data are available from a field study with summer application in cereals, which is discussed below.

For P. cupreus a study is available showing a total effect of 3.3% (lethal and sublethal) at a dose rate of 0.0125 kg a.s./ha. The current dose rate applied for is 0.005 kg a.s./ha. Therefore also for this application a low risk for P. cupreus is expected.

Based on the data presented above an in-field (and off-field) risk for non-target arthropods cannot be excluded. Higher tier studies are therefore required.

 

Higher tier: extended laboratory tests

 

Standard species Typhlodromus pyri

For Typhlodromus pyri an extended laboratory test is available showing the following results: overall adverse effects (mortal./reprod.) of 10%, 48.8%, 46.3%, 58.9% and 90.7% resp. for 0.015, 0.027, 0.047, 0.084 and 0.15 kg a.s./ha.

The current dose rate applied for is 0.005 kg a.s./ha, which is below the lowest concentration tested of 0.015 kg a.s./ha showing overall adverse effects of 10%

Based on the data presented above also for the current application a low risk for Typhlodromus pyri is expected.

 

Higher tier: field test (taken from the DAR)

A field test is available in the DAR  with two summer applications at 7.5 and 15 g a.s./ha in winter wheat.  The result s for the Standard species Aphidius rhopalosiphi and the Additional species Liniphiid spiders are discussed separately. As esfenvalerate is listed on Annex I of Directive 91/414/EEC, the reasoning for both species is adopted and copied from the DAR.

 

Standard species Aphidius rhopalosiphi

For Aphidius spp. a field test with an EC form. 50 g a.s./l, two summer applications at 7.5 and 15 g a.s./ha in winter wheat is available.

Aphidius spp. are included in the test results, but it is not specified whether A. rhopalosiphi was one of these species. For the Aphidius spp. the total number of individuals found at the end of the study  was similar in the control and esfenvalerate plots but it was 56% lower in the toxic reference dimethoate plots. Numbers in the esfenvalerate plots were initially reduced relative to the controls but subsequently (within two weeks) recovered.

Based on the data presented above for the current application a low risk for Aphidius rhopalosiphi is expected.

 

Additional species

Soil-dwelling non-target arthropods: Liniphiid spiders

For Liniphiid spiders a field test with an EC form. 50 g a.s./l, two summer applications at 7.5 and 15 g a.s./ha in winter wheat is available. Transient and short lived effects on Lycosiidae were recorded with a recovery after three weeks.


 

Foliage-dwelling non-target arthropods

For Chrysoperla carnea  a field test (described in the DAR) is available showing an effect on mortality of 10% on larvae at a dose rate of 0.0125 kg a.s./ha. Feeding activity was also reduced compared to the water controls. The current dose rate applied for is 0.005 kg a.s./ha. Therefore also for this application a low risk for C. carnea  is expected.

 

Hence, the standards for non-target arthropods are met. 

 

7.5.2    Earthworms

The acute risk for earthworms is calculated as TER-value (trigger value 10). Since the logPow of the active substance > 2, a correction to the reference soil containing 4.7 % organic matter is necessary. The (corrected) toxicity value for earthworms based on the 14-day LC50 (10.6 mg/kg) of the active substance amounts therefore 4.98 mg/kg. Exposure is expressed as the initial PEC soil. PEC soil is calculated in section 6.1.1. Table E.13 presents endpoints, PECsoil and TER values.

 

Table E.13 Overview of soil concentrations and acute TERs for esfenvalerate

Use

Substance

LC50corr

[mg/kg]

PIEC soil

[mg/kg]

TER

Trigger value

Onion, shallot

Esfenvalerate

4.98

0.006

830

10

           

In view of the results presented in Table E.13, a low acute risk for earthworms is expected at the proposed use.

 

Subletal studies are required because 100 DT90,field 365 d, the maximum frequency is 3 and 10 < TERacute 1000.

 

In the subchronic risk assessment for earthworms, a long-term TER-value is calculated. Examination of the PIEC takes place against the trigger of 0.2*NOEC. See Table E.14.

The corrected long-term toxicity value for earthworms based on the NOEC (1.1 mg/kg) of the active substance amounts 0.517 mg/kg. This value is examined against the initial PEC soil (see above) in Table E.14. 

 

Table E.14 Overview of soil concentrations and chronic TERs for esfenvalerate

Use

Substance

NOECcorr

[mg/kg]

PIEC soil

[mg/kg]

TER

Trigger value

Onion, shallot

Esfenvalerate

0.517

0.006

86.2

5

           

The chronic threshold value for earthworms resulting from exposure to the active substance esfenvalerate is not exceeded. The proposed application of the product therefore meets the standards.

 

7.5.3    Effects on soil micro-organisms

In the tested soils no effects are observed on nitrogen transformation and carbon respiration processes at relevant application rates with the active substance esfenvalerate. No permanent adverse effects were recorded for dose rates up to 1.28 kg a.s./ha. The current application rate applied for is 0.005 kg/ha. For this dose rate also no effects are anticipated. Since the reduction percentage is below 25% after 100 days, the standards regarding soil micro-organisms are met.


 

7.5.4    Effects on activated sludge

An EC50 value of >1000 mg a.s./L is available.

 

However, for the proposed uses no exposure of activated sludge is expected. Therefore, the proposed applications comply with the standards for activated sludge.

 

7.5.5    Effects on non target-plants

The risk assessment for non-target plants is based on an off-crop situation with a drift percentage of 10%. The exposure thus equals 0.1 * the application rate.

A TER is calculated with the lowest EC50 value from a laboratory test with higher plants and the exposure concentration.The lowest ER50 is >0.030 kg a.s./ha. See table E.15:

 

Table E.15: Overview of exposure concentrations and TERs for non target plants