Toelatingsnummer 12228 N

Pyramin DF  

 

12228 N

 

 

 

 

 

 

 

 

HET COLLEGE VOOR DE TOELATING VAN

GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

1 WIJZIGING TOELATING

 

Gelet op het verzoek d.d. 10 november 2006 (20060716 WGGAG) van

 

BASF Nederland B.V.

Groningensingel 1

6835 EA  ARNHEM

 

 

tot wijziging van de toelating als bedoeld in artikel 28, eerste lid, Wet gewasbeschermingsmiddelen en biociden,  van het gewasbeschermingsmiddel, op basis van de werkzame stof chloridazon

 

Pyramin DF

 

gelet op artikel 121, eerste lid, jo. artikel 41, tweede lid, Wet gewasbeschermingsmiddelen en biociden (Stb. 2007, 125),

 

BESLUIT HET COLLEGE als volgt:

 

1.1  Wijziging toelating

De toelating van het middel Pyramin DF is laatstelijk bij besluit d.d. 13 april 2007 verlengd tot 31 december 2008. De toelating van het middel Pyramin DF wordt gewijzigd en is met ingang van datum dezes toegelaten voor de in bijlage I genoemde toepassingen.Voor de gronden van dit besluit wordt verwezen naar bijlage II bij dit besluit.

 

1.2  Samenstelling, vorm en verpakking

De toelating geldt uitsluitend voor het middel in de samenstelling, vorm en de verpakking als waarvoor de toelating is verleend.

 

1.3  Gebruik

Het middel mag slechts worden gebruikt met inachtneming van hetgeen in bijlage I onder A bij dit besluit is voorgeschreven.

 


1.4 Classificatie en etikettering

 

Gelet op artikel 29, eerste lid, sub d, Wet gewasbeschermingsmiddelen en biociden,

 

1.    De aanduidingen, welke ingevolge artikel 36 van de Wet milieugevaarlijke stoffen en artikelen 14, 15a, 15b, 15c en 15e van de Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten op de verpakking moeten worden vermeld, worden hierbij vastgesteld als volgt:

 

aard van het preparaat:Water dispergeerbaar granulaat

 

werkzame stof:

gehalte:

chloridazon

65 %

 

 

letterlijk en zonder enige aanvulling:

 

andere zeer giftige, giftige, bijtende of schadelijke stof(fen):  

-

 

gevaarsymbool:

aanduiding:

Xn

Schadelijk

N

Milieugevaarlijk

 

 

Waarschuwingszinnen: 

 

Schadelijk bij opname door de mond.

Zeer vergiftig voor in het water levende organismen; kan in het aquatisch milieu op lange termijn schadelijke effecten veroorzaken.

 

 

Veiligheidsaanbevelingen:

 

Niet roken tijdens gebruik.

Draag geschikte handschoenen en beschermende kleding.

In geval van inslikken onmiddellijk een arts raadplegen en verpakking of etiket tonen.

Deze stof en de verpakking als gevaarlijk afval afvoeren. (Deze zin hoeft niet te worden vermeld op het etiket indien u deelneemt aan het verpakkingenconvenant, en op het etiket het STORL-vignet voert, en ingevolge dit convenant de toepasselijke zin uit de volgende verwijderingszinnen op het etiket vermeldt:

1)      Deze verpakking is bedrijfsafval, mits deze is schoongespoeld, zoals wettelijk is voorgeschreven.

2)      Deze verpakking is bedrijfsafval, nadat deze volledig is geleegd.

3)      Deze verpakking dient nadat deze volledig is geleegd te worden ingeleverd bij een KCA-depot. Informeer bij uw gemeente.)

Voorkom lozing in het milieu. Vraag om speciale instructies / veiligheidsgegevenskaart.

 

Specifieke vermeldingen:

 

Volg de gebruiksaanwijzing om gevaar voor mens en milieu te voorkomen.

 

2.    Behalve de onder 1. bedoelde en de overige bij de Wet Milieugevaarlijke Stoffen en Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten voorge­schreven aanduidingen en vermeldingen moeten op de verpakking voorkomen:

 

a.       letterlijk en zonder enige aanvulling:
het wettelijk gebruiksvoorschrift
De tekst van het wettelijk gebruiksvoorschrift is opgenomen in Bijlage I, onder A.

 

b.      hetzij letterlijk, hetzij naar zakelijke inhoud:
de gebruiksaanwijzing
De tekst van de gebruiksaanwijzing is opgenomen in Bijlage I, onder B.
De tekst mag worden aangevuld met technische aanwijzingen voor een goede bestrijding mits deze niet met die tekst in strijd zijn.

 

c.      bij het toelatingsnummer een cirkel met daarin de aanduiding W.3.

 

2 DETAILS VAN HET VERZOEK EN DE TOELATING

 

2.1 Verzoek

Het middel is toegelaten als onkruidbestrijdingsmiddel in de teelt van

a.    suikerbieten, voederbieten, zaadbieten en pootbieten;

b.    zaaiuien, eerstejaars plantuien, tweedejaars plantuien en sjalotten;

c.    kroten;

d.    bloembolgewassen;

e.    boomkwekerijgewassen.

 

De gevraagde wijziging betreft verwijdering van de volgende driftreducerende maatregelen uit het WG:

1.                  Op bieten- en krotenpercelen die grenzen aan watergangen is gebruik uitsluitend toegestaan indien gespoten wordt met een spuitdop van de driftreductieklasse van minimaal 90 dan wel met een rijenspuit. Indien op deze percelen het middel uitsluitend na opkomst wordt toegepast, is gebruik toegestaan met driftarme doppen conform het lozingsbesluit.

2.                  Op bloembollen- en uienpercelen die grenzen aan watergangen is gebruik uitsluitend toegestaan indien gespoten wordt met een spuitdop van de driftreductieklasse van
minimaal 75.

3.                  Op boomkwekerijenpercelen die grenzen aan watergangen is gebruik uitsluitend toegestaan indien gespoten wordt met een spuitdop van de driftreductieklasse van minimaal 90.

 

2.2 Informatie met betrekking tot de stof

Chloridazon is een bestaande werkzame stof en is nog niet geplaatst op bijlage I van 91/414/EEG. RMS is Duitsland. Er is een Draft Assessment Report (DAR) beschikbaar.

 

Er is een besluit genomen (in stemming gebracht in december 2007) tot plaatsing van de werkzame stof op Annex I van de gewasbeschermingsrichtlijn 91/414/EEG. Plaatsing wordt van kracht per 1 januari 2009.

 


2.3 Karakterisering van het middel

Chloridazon is een systemisch herbicide, het wordt snel door de wortels opgenomen, met vervolgens verplaatsing naar alle plantendelen. Het behoort tot de groep der herbiciden die de (niet-cyclische) fotosynthese verstoren. Adenosinetrifosfaat (ATP) wordt niet meer goed vastgelegd, suikers worden niet meer gevormd en reactieve tussenproducten kunnen niet meer verder omgezet en afgevoerd worden. Energie wordt hierdoor niet meer goed vastgelegd en de plant sterft af, deels door gebrek aan voedsel, maar bovenal door de destructieve werking van ophopende tussenproducten van de fotosynthesereactie.

 

2.4 Voorgeschiedenis

De aanvraag is ontvangen op 13 november 2006. De aanvraag is op 28 februari 2008 in behandeling genomen.

 

3  RISICOBEOORDELINGEN

Het gebruikte toetsingskader voor de beoordeling van deze aanvraag is de Handleiding toelating bestrijdingsmiddelen (HTB) versie 1.0.

 

3.1  Fysische en chemische eigenschappen

Gezien de aard van het verzoek niet van toepassing.

 

3.2  Analysemethoden

Gezien de aard van het verzoek niet van toepassing.

 

3.3  Risico voor de mens

Gezien de aard van het verzoek niet van toepassing.

 

3.4  Risico voor het milieu

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, geen voor het milieu onaanvaardbaar effect heeft, waarbij in het bijzonder rekening wordt gehouden met de volgende aspecten:

-          de gevolgen voor niet-doelsoorten.

(artikel 28, eerste lid, sub b, onderdeel 4 en 5, Wet gewasbeschermingsmiddelen en biociden).

 

De beoordeling van het risico voor het milieu staat beschreven in Hoofdstuk 6, Environmental Fate and Behaviour, en Hoofdstuk 7, Ecotoxicology, in Bijlage II bij dit besluit.

Het profiel gedrag en lotgevallen staat beschreven in Hoofdstuk 6 in Bijlage II bij dit besluit. Het profiel Ecotoxicology staat beschreven in Hoofdstuk 7 in Bijlage II bij dit besluit.

 

Gezien de aard van het verzoek is het deel gedrag en lotgevallen (Hoofdstuk 6) niet volledig herbeoordeeld.

 

3.5  Werkzaamheid

Gezien de aard van het verzoek niet van toepassing.

 

3.6  Eindconclusie

Bij gebruik volgens het gewijzigde Wettelijk Gebruiksvoorschrift/Gebruiksaanwijzing is het middel Pyramin DFop basis van de werkzame stof chloridazon voldoende werkzaam en heeft het geen schadelijke uitwerking op de gezondheid van de mens en het milieu (artikel 28, Wet gewasbeschermingsmiddelen en biociden).

 

 

 

 

 

 

Degene wiens belang rechtstreeks bij dit besluit is betrokken kan gelet op artikel 119, eerste lid, Wet gewasbeschermingsmiddelen en biociden en artikel 7:1, eerste lid, van de Algemene wet bestuursrecht, binnen zes weken na de dag waarop dit besluit bekend is gemaakt een bezwaarschrift indienen bij: het College voor de toelating van gewasbeschermingsmiddelen en biociden (Ctgb), Postbus 217, 6700 AE WAGENINGEN. Het Ctgb heeft niet de mogelijkheid van het elektronisch indienen van een bezwaarschrift opengesteld.

 

 

Wageningen, 27 juni 2008

 

 

HET COLLEGE VOOR DE TOELATING VAN  GEWASBESCHERMINGSMIDDELEN EN  BIOCIDEN,





(voorzitter)

 

 



HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE I bij het besluit d.d. 27 juni 2008 tot wijziging van de toelating van het middel Pyramin DF, toelatingnummer 12228 N

 

 

A.

WETTELIJK GEBRUIKSVOORSCHRIFT

 

Toegestaan is uitsluitend het gebruik als onkruidbestrijdingsmiddel in de teelt van:

a.    suikerbieten, voederbieten, zaadbieten en pootbieten;

b.    zaaiuien, eerstejaars plantuien, tweedejaars plantuien en sjalotten;

c.    kroten;

d.    bloembolgewassen;

e.    boomkwekerijgewassen.

 

Het middel is uitsluitend bestemd voor professioneel gebruik.

 

Veiligheidstermijn:

Zaaiuien, eerstejaars plantuien, tweedejaars plantuien en sjalotten: 90 dagen.

 

 

B.

GEBRUIKSAANWIJZING

 

 

TOEPASSINGEN

 

Bieten (suiker-, voeder- en zaadbieten en pootbietjes)

Na zaai:

Pyramin DF bij voorkeur direct na zaai of poten toepassen op vochtige grond, op een voldoende fijn en goed aaneengesloten liggend zaaibed.

Doseringen:

De richtdosering is 4 kg per ha (volvelds).

Op humusarme zandgronden, zeer lichte zavel en zandkoppen in de polders 2-3 kg per ha gebruiken.

 

Tijdens en na opkomst:

Pyramin DF kan tijdens en na opkomst van de bieten in combinatie met andere daarvoor toegelaten herbiciden worden toegepast op kleine onkruiden.

 

Dosering:

·       op kiemend onkruid: 0,5 kg/ha

·       op onkruiden met 1 echt blad, vanaf gestrekt kiembladstadium van de bieten: 0,75 kg/ha

·       op onkruiden met 2 echte blaadjes, vanaf begin tweebladstadium van de bieten:
0,95 kg/ha

 

Opmerkingen:

·       In totaal maximaal 4 kg Pyramin DF toepassen.

·       Bij temperaturen boven 23°C in na opkomst tegen de avond spuiten.

 


Zaaiuien, eerstejaars plantuien, tweedejaars plantuien en sjalotten

Pyramin DF dient na opkomst van het gewas te worden toegepast op zeer kleine onkruiden, in combinatie met een ander daarvoor toegelaten herbicide. De toepassing herhalen wanneer weer jong onkruid verschijnt.

 

Dosering:   0,5 kg Pyramin DF per ha.

                   Vanaf 4 cm gewaslengte kan de dosering worden verhoogd tot 1 kg per ha.

 

Kroten (rode bietjes)

Na zaai:

Dosering:   2 tot 4 kg Pyramin DF per ha, afhankelijk van de grondsoort (zie onder bieten).

 

Bloembollen

Pyramin DF kan in de bloembollenteelt uitsluitend worden gebruikt voor de onkruidbestrijding in tulpen, irissen, narcissen, hyacinten en lelies. Voor een goed effect is een voorafgaande behandeling met chloorprofam (chloor-IPC) noodzakelijk.

Spuit niet in perioden met nachtvorst of na stuifschade.

 

Tulp

Alleen gebruiken op zavel en kleigronden met tenminste 20% slib en 2% humus.

Toepassen kort vóór of na de opkomst, doch in ieder geval voor het spreiden van het gewas. Uitsluitend vóór de opkomst kan Pyramin DF gecombineerd worden gespoten met chloorprofam.

Dosering:   max. 3 kg per ha.

 

Iris

Alleen gebruiken op zavel en kleigronden met tenminste 20% slib en 2% humus.

Toepassen ca. 7-10 dagen na een voorafgaande bespuiting (enkele dagen na het ontdekken) met chloorprofam.

Dosering:   max. 3 kg per ha.

 

Narcis

Toepassen ca. 2 weken na een voorafgaande bespuiting (enkele dagen na het ontdekken) met chloorprofam.

Niet toepassen op humusarme zandgronden (nieuwe tuinen).

Dosering:   2 kg per ha.

 

Hyacint

Toepassen ca. 7-10 dagen een voorafgaande bespuiting (enkele dagen na het ontdekken) met chloorprofam.

Pyramin DF alleen toepassen bij grotere maten (vanaf 9 cm) en uitsluitend tot een spruitlengte van 5 cm.

Niet toepassen op humusarme zandgronden (nieuwe tuinen).

Dosering:   1,5-2 kg per ha.

 

Lelies

Toepassen rond of kort na de opkomst na een voorafgaande bespuiting (ruim voor opkomst van het gewas) met chloorprofam. Alleen spuiten op een afgehard gewas bij temperaturen beneden 20°C. Als men na de toepassing wil beregenen, dient men hiermee minstens 1 dag te wachten.

Dosering:   2 kg per ha.

 


Boomkwekerijgewassen

Pyramin DF kan in de boomteelt gebruikt worden als bodemherbicide kort na het zaaien in de teelt van zaailingen. In verband met de kans op schade en de beperkte ervaring is het gebruik vooralsnog alleen verantwoord op grondsoorten met een organisch stofgehalte van minimaal 5%. Bij organische stofgehaltes boven 10% is de werking onvoldoende.

Dosering:        4 kg per ha.



HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE II bij het besluit d.d. 27 juni 2008 tot wijziging van de toelating van het middel Pyramin DF, toelatingnummer 12228 N

 

Contents                                                                  Page

 

 

1.   Identity of the plant protection product        2

 

2.   Physical and chemical properties                  2

 

3.   Methods of analysis                                         2

 

4.   Mammalian toxicology                                      2

 

5.   Residues                                                            2

 

6.   Environmental fate and behaviour                3

 

7.   Ecotoxicology                                                    19

 

8.   Efficacy                                                               29

 

9.   Conclusion                                                        29

 

10.Classification and labelling                             29

 


1.         Identity of the plant protection product

 

1.1       Applicant

BASF Nederland B.V.

Groningersingel 1

6835 EA  Arnhem

 

1.2       Identity of the active substance

The identity of the active substance does not change.

 

1.3       Identity of the plant protection product

The identity of the plant protection product does not change.

 

1.4       Function

Pyramin DF, based on the active substance chloridazon, is a herbicide.

 

1.5       Uses applied for

Not applicable. The scope of the application does not involve a change in the instructions for use.

 

1.6       Background to the application

The application concerns a request to remove the drift mitigation measures included in the instructions for use.

 

1.7       Packaging details

Packaging details do not change.

 

 

2.                  Physical and chemical properties

 

The scope of the application does not require re-evaluation of this aspect.

 

 

3.                  Methods of analysis

 

The scope of the application does not require re-evaluation of this aspect.

 

 

4.                  Mammalian toxicology

 

The scope of the application does not require re-evaluation of this aspect.

 

 

5.                  Residues

 

The scope of the application does not require re-evaluation of this aspect.

 


 

6.                  Environmental fate and behaviour

 

List of Endpoints Fate/behaviour

(DAR, February 2006)

 

CHLORIDAZON

 

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1)

Mineralisation after 100 days ‡

14C-chloridazon

Sandy loam:      5.6 % AR after 120 days
                        18.6 % AR after 373 d (study end)
Sandy clay loam:          2.2 % AR after 124 days
                        3.9 % AR after 367 days (study end)

Non-extractable residues after 100 days ‡

14C-chloridazon

Sandy loam:        9.3 % AR after 120 days
                        12.7 % AR after 373 days (study end)
Sandy clay loam:          13.3 % AR after 124 days
                        19.0 % AR after 367 days (study end)

Relevant metabolites - name and/or code, % of applied (range and maximum) ‡

Metabolite B:     increasing during the study
                        13.8 - 16.9 % AR after 120 days
                        max. 55.9 % AR after 373 days (study end) (14C-chloridazon, 25 °C, 75 % field capacity,
soil: % sand/silt/clay 54/32/14 and 67/9/24):

Metabolite B-1 was not analysed in metabolism studies, but detected in rate study with metabolite B and in lysimeter leachate.

 

Route of degradation in soil - Supplemental studies(Annex IIA, point 7.1.1.1.2)

Anaerobic degradation ‡

Mineralisation after 100 days

 

Chloridazon (tested: 14C-chloridazon):

                           Sandy clay loam     Sandy loam

Unchanged as:  81.5 % after 91 d89.6 % after 90 d

Mineralisation:   1.2 % after 91 d    3.5 % after 90 d

Non-extractable residues after 100 days

 

Chloridazon (tested: 14C-chloridazon):

                               Sandy clay loam                                                Sandy loam

Bound residues:  9.7 % after 91 d  6.2 % after 90 d

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Chloridazon (tested: 14C-chloridazon):

                            Sandy clay loam     Sandy loam

Metabolite B:       8.8 % after 91 d  4.8 % after 90 d

Soil photolysis ‡

 

Soil: loamy sand, OM 1.9 %, 80 % sand, 13 % silt,
6.7 % clay

After 15 d (% TAR 14C-chloridazon):
57 %- 61 % chloridazon remained;
Mineralisation 13 % - 14 %; bound residues 6 %;
no metabolites > 5 % TAR

 

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies ‡

Parent Chloridazon

Aerobic conditions

Soil type

X[1]

pH

t. oC / % MWHC

DT50 /DT90 (d)

DT50 (d)

20 °C pF2/10kPa

St.

(r2)

Method of calculation

Sandy clay loam

-

7.7

25 oC / 75 %

 

187.6 / -

 

173.9

0,98

DT50: Model maker Version 4.0

Sandy loam

-

5.9

25 oC / 75 %

 

154.9 / -

 

157.1

0,96

DT50: Model maker Version 4.0

Loam

-

7.2

20 oC / 40 %

 

10.7 / 50

 

9.0

0.98

DT50: Model maker Version 4.0

DT90: Timme and Frese best fit

Loamy sand

-

6.7

20 oC / 40 %

 

8.6 / 54

8.6

0.96

DT50: Model maker Version 4.0

DT90: Timme and Frese best fit

Clay

-

7.4

20 oC / 40 %

 

82.1 / > 100

 

40.6

0.97

DT50: Model maker Version 4.0

DT90: Timme and Frese best fit

Loamy sand

-

5.6

20 oC / 40 %

 

43 / 140

 

75.1

0.95

DT50: Model maker Version 4.0

DT90: Timme and Frese best fit

Geometric mean/median

 

 

43.1 / 57.9

 

 

 

-

-

10 °C

-

18.9 – 382.6-

-

Calculated by RMS with Q10 (2.2) from above-quoted pF2 normalised 20 °C DT50 values

Geometric mean/median

 

 

94.9 / 127.3

 

 

 

 

Met B

Aerobic conditions

Soil type

 

X1

pH

t. oC / % MWHC

DT50/ DT90
(d)

 f. f. kdp/kf

DT50 (d)

20 °C pF2/10kPa

St.

(r2)

Method of calculation

Sandy loam

Limburgerhof

-

-

20 °C/40 %

80/>120

-

92.9

0.97

ModelMaker 3.0.4, best fit

Loamy sand Limburgerhof

-

-

20 °C/40 %

93/>120

-

97.3

0.94

ModelMaker 3.0.4, best fit

Sandy loam LUFA 2.3

-

-

20 °C/40 %

132/>120

-

116.9

0.79

ModelMaker 3.0.4, best fit

Loamy sand LUFA 2.2

-

-

20 °C/40 %

120/>120

-

-128.7

0.95

ModelMaker 3.0.4, best fit

Geometric mean/median

 

 

 

108.0 / 107.1

 

 

Met B 1

Aerobic conditions

Soil type

 

X1

pH

t. oC / % MWHC

DT50/ DT90
(d)

 f. f. kdp/kf

DT50 (d)

20 °C pF2/10kPa

St.

(r2)

Method of calculation

Sandy loam

Limburgerhof

-

-

20 °C/40 %

135/>120

-

139.5

0.97

ModelMaker 3.0.4, best fit

Loamy sand Limburgerhof

-

-

20 °C/40 %

118/>120

-

131

0.95

ModelMaker 3.0.4, best fit

Sandy loam LUFA 2.3

-

-

20 °C/40 %

152/>120

-

135.4

0.84

ModelMaker 3.0.4, best fit

Loamy sand LUFA 2.2

-

-

20 °C/40 %

170/>120

-

176.8

0.94

ModelMaker 3.0.4, best fit

Geometric mean/median

 

-

 

144.6 / 137.5

 

 

Field studies ‡

Parent Chloridazon

Aerobic conditions

Soil type (indicate if bare or cropped soil was used).

Location (country or USA state).

X1

pH

 

Depth (cm)

DT50 (d)

actual

DT90(d)

actual

St.

(r2)

DT50/

DT90 (d)

Norm.

Method of calculation

Silty sand (bare soil)

Sweden

 

6

-

79

214

0.85

16 / 54

Model Maker 3.0.4, 1st order kinetic

Sandy loam (bare soil)

Germany

 

6.5

-

16

54

0.94

6 / 19

Model Maker 3.0.4, 1st order kinetic

Clayey sand (bare soil)

Germany

 

4.6

-

69

230

0.96

55 / 184

Model Maker 3.0.4, 1st order kinetic

Heavy loam sand (bare soil)

Germany

 

5.1

-

13

44

0.86

10 / 32.4

Model Maker 3.0.4, 1st order kinetic

Loam (bare soil)

Germany

 

7.1

-

17

57

0.90

16 / 531

Model Maker 3.0.4, 1st order kinetic

Loam (bare soil)

Germany

 

6.8

-

14

47

0.89

3 / 91

Model Maker 3.0.4, 1st order kinetic

Clay

(pre-emergence, sugar beet)

USA

 

7.3

-

94

313

0.77

105 / 3491

Model Maker 3.0.4, 1st order kinetic

Sandy loam

(pre‑emergence, sugar beet)

USA

 

6.6

-

59

195

0.83

42 / 138

Model Maker 3.0.4, 1st order kinetic

Sandy loam (bare soil)

Italy

 

6.5

-

17

56

0.89

20 / 67

Model Maker 3.0.4, 1st order kinetic

Clay silt loam (bare soil)

Spain

 

8.1

-

30

100

0.89

22 / 73

Model Maker 3.0.4, 1st order kinetic

Geometric mean/median

 

 

 

19 / 202

 

1) no reliable results (below minimum data points or low coefficient of determination)

2) data for DT50 values, n = 7, values marked with 1 were not included

 

 

pH dependence ‡
(yes / no) (if yes type of dependence)

-

Soil accumulation and plateau concentration ‡

Based on degradation studies, no accumulation expected

 

Laboratory studies ‡

Parent Chloridazon

Anaerobic conditions

Soil type

X[2]

pH

t. oC / % MWHC

DT50 / DT90 (d)

DT50 (d)

20 °C pF2/10kPa

St.

(r2)

Method of calculation

Sandy clay

 

-

25 °C

370

-

-

Regression analysis

Sandy loam

 

-

25 °C

607

-

-

Regression analysis

Geometric mean/median

 

 

 

 

 

 

Met 1

Anaerobic conditions

Soil type

 

X1

pH

t. oC / % MWHC

DT50/ DT90
(d)

 f. f.    kdp/kf

DT50 (d)

20 °C pF2/10kPa

St.

(r2)

Method of calculation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric mean/median

 

 

 

 

 

 

 

 

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Parent chloridazon

Soil Type

OC %

Soil pH

Kd (mL/g)

Koc

(mL/g)

Kf

(mL/g)

Kfoc

(mL/g)

1/n

Sandy loam

-

-

-

-

0.2

89

0.568

Sandy loam

-

-

-

-

0.69

128

0.914

Sand

-

-

-

-

0.25

220

1.030

Silty loam

-

-

-

-

1.0

220

0.836

Clay

-

-

-

-

3.6

340

0.877

Arithmetic mean/median

-

199

0.845

pH dependence, Yes or No

no pH dependency

 

Metabolite B ‡

Soil Type ( % particels < 0.02 mm)

OC %

Soil pH

Kd (mL/g)

Koc

(mL/g)

Kf

(mL/g)

Kfoc

(mL/g)

1/n

- (10.7)

0.7

7.0

-

-

0.34

49

0.804

- (23.2)

0.9

7.3

-

-

0.42

46

0.819

- (40.0)

0.6

7.3

-

-

0.43

74

0.844

- (14.9)

2.4

6.0

-

-

0.71

29

0.868

Arithmetic mean/median

 

50

0.834

pH dependence (yes or no)

no pH dependency

Metabolite B 1 ‡

Soil Type

OC %

Soil pH

Kd (mL/g)

Koc

(mL/g)

Kf

(mL/g)

Kfoc

(mL/g)

1/n

Loamy sand

-

-

-

-

0.40

100

0.794

Loamy sand

-

-

-

-

0.43

39

0.861

Sandy loam

 

 

 

 

0.50

33

0.851

Loam

-

-

-

-

0.68

136

0.915

Sand/loamy sand

-

-

-

-

0.68

27

0.907

Sandy clay loam

-

-

-

-

7.34

216

0.871

Arithmetic mean/median

 

92

0.867

pH dependence (yes or no)

no pH dependency

 

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching ‡

 

Eluation (mm): 200 mm irrigation

Time period (d): x d

Guideline: BBA Merkblatt No 37
German standard soils LUFA 2.1, 2.2, 2.3
Applied amount 2.6 kg as/ha, 200 mm irrigation

Conc. in leachate:

                        LUFA soil 2.1      2.2            2.3
Chloridazon       25.2 %               < 0.8 %        16.2 %

Metabolites                                                                          no detected

Aged residues leaching ‡

Aged for (d):  30 d

Time period (d): x d

Eluation (mm): 200 mm

14.7 % TRR (total) retained in top soil segment 1

Guideline: BBA IV 4-2
German standard soil LUFA 2.1 (sandy soil);
soil conc. 3 mg as/ha, 200 mm irrigation, 30 d aerobic preincubation (22 °C, 40 % WHC)
Conc. in leachate: 0.3 % of total residue radioactivity as chloridazon and metabolite B.

 

Lysimeter/ field leaching studies ‡

 

1)1 Location: Germany, Northrhine-Westfalia

-          Study type: lysimeters,
1x silty loam (LY-TP, 0.1-6.4 % sand, 73-78 % silt,

       15-27 % clay);
       2 x loamy sand (LY -SPB, 50-94 % sand,

       4.6-37 %    silt, 1.7-13.8 % clay)

- Test substance: (4,5-14C)chloridazon

- Number of applications: 1 application equiv. to 2.6 kg as/ha on sugar beet, pre-emergence

 

                                      LY-TP               LY-SPB

- Average annual rainfall
1. year                         773 mm            785 mm
2. year                         820 mm            808 mm

- Annual leachate volume (1989-1991):
1. year                         113 L/m˛           130 L/m˛
2. year                         127 L/m˛           200 L/m˛

- % radioactivity in leachate (overall balance):
% TAR                         0.32                  7.05

- Maximum annual average concentrations (µg/L):
Chloridazon as:             0.009 µg/L      <0.05 µg/L
Metabolite B:                2.13 µg/L        40.6 µg/L
Metabolite B-1:             0.1 µg/L          2.1 µg/L

 

2) Location: Germany, Northrhine-Westfalia

- Study type: lysimeters, loamy sand (LY-SPB, 71-91 % sand, 5.9-25 % silt, 2.9-5.2 % clay

- Test substance: non-radiolabelled chloridazon

- Number of applications: 1 application correspond. to 1.82 kg as/ha on sugar beet, pre-emergence

- Average annual rainfall:
1st year 839.8 mm/year; 2nd year 780.3 mm/year

- Average annual leachate volume (1990-1992):
 59.5 L 1st year, 261.2 L 2nd year

- Maximum annual average concentrations:
Chloridazon as:                                  <0.05  µg/L
Metabolite B:                                 4.1 / 12.2 µg/L

1 Deze studie is eerder in een Nederlandse beoordeling besproken, in C-133_3_5. Hierin stond het volgende: In een veld lysimeterstudie (niet-GLP) uitgevoerd in Duitsland werd een dosering van respectievelijk 2,96 en 2,5 kg chloridazon/ha op lysimeters 1 (alluviale löss, org. stof gehalte
= 1,05%) en 2 (zandgrond, org. stof gehalte = 0,9%) toegepast. Er werd wisselteelt toegepast met suikerbieten, wintertarwe en wintergerst. Het percolaat werd, indien aanwezig, eenmaal in de 3 - 4 weken afgepompt en geanalyseerd. De grond werd na 197, 474 en 748 - 750 dagen (einde studie) bemonsterd.

Het percolaat bevatte in totaal 0,32% (lysimeter 1) en 7,05% (lysimeter 2) van de toegepaste radioactieve dosis, voornamelijk bestaande uit mI. Slechts in 1 monster van lysimeter 1, ongeveer 2 maanden na toepassing, werd chloridazon teruggevonden in een concentratie van 0,048 µg/L (detectiegrens: 0,024 µg/L). In lysimeter 1 werd mI teruggevonden in jaar 1 en 2 in concentraties van respectievelijk 1,73 - 3,00 en 1,11 - 1,72 µg/L. In lysimeter 2 nam het mI gehalte in het percolaat geleidelijk toe van 0,89 µg/L tot een maximum van 55 µg/L na 2 jaar, waarna het weer afnam tot 43 µg/L gedurende de twee laatste maanden van de studie (totaal gemiddelde = 27 µg/L). Het gehalte aan 5-amino-4-chloro-2-methyl-3(2H)-pyridazinone (mII, RIVM rapport 1990) vertoonde een soortgelijk gedrag maar was ongeveer een factor 22 lager (totaal gemiddelde = 0,92 - 1,34 µg/L in respectievelijk lysimeter 1 en 2). Er werden zeer lage gehalten aan opgeloste vluchtige componenten in het lekwater gemeten (0,02 - 0,04%). Het gehalte aan niet-geďdentificeerde stoffen in lysimeter 1 was vrij constant vanaf de tiende maand (gemiddelde 0,92 µg/L), maar vertoonde in lysimeter 2 na ongeveer 1 jaar een plotselinge stijging, bleef vervolgens constant gedurende een jaar, en nam weer toe gedurende de laatste 2 maanden (gemiddelde 9,81 µg/L).

In de bovenste 10 cm van de grond had na 187 dagen meer 14C translocatie plaatsgevonden in de zandgrond van lysimeter 2 dan in de löss van lysimeter 1. Bij het einde van de studie bevatte de bovenste 30 cm van de grond 68,2% (lysimeter 1) en 44,4% (lysimeter 2) van de toegepaste dosis. De extraheerbaarheid van het residu in de grond nam toe op grotere diepte. Het merendeel van de geëxtraheerde radioactiviteit (75 - 95%) bestond uit mI. De 3 aangeplante gewassen bevatten bij oogst 2 - 3% van de toegepaste radioactieve dosering.

Voor deze lysimeterstudie is geen standaardisatie uitgevoerd.

 

PEC (soil) (Annex IIIA, point 9.1.3)

Parent

Method of calculation

DT50 (d): 78.5 days Chloridazon

Kinetics: Compartment model, ModelMaker 4.0, all fluxes were parameterised with first order rate constants.

Field or Lab: representative worst case from field studies.

Application data

Crop:

Depth of soil layer: 5 cm

Soil bulk density: 1.5 g/cm3

% plant interception: Pre-emergence therefore no crop interception

Number of applications: 1

Interval (d): x

Application rate(s): 2600 g as/ha

 

 

Metabolite I

Method of calculation

Compartment model, ModelMaker 4.0,
covering the as and its metabolites B and B-1. Worst case first order transformation rate constants based on worst case laboratory (uncorrected) half-life of metabolite B (132 d) and worst case rate constants describing the kinetic equilibrium between the metabolite B and B-1.

All fluxes were parameterised with first order rate. The molar formation fraction of metabolite B from as was 64.8 % obtained in a laboratory metabolism study. No corrections of transformation rates for temperature or soil moisture. Results include corrections for molar weight differences of the compounds.

Worst case kinetic equilibrium between Metab. B and Metabolite B-1:                            k12=0.00329
Metabolite B-1:                                    k21=0.0105

Plateau concentration

x mg/kg after n yr

 

 

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance and metabolites > 10 % ‡

pH 5 25 °C:   no hydrolysis occurred, chloridazon is stable over 30 days

 

pH 7 25 °C:   no hydrolysis occurred, chloridazon is stable over 30 days

 

pH 9 25 °C:   no hydrolysis occurred, chloridazon is stable over 30 days

Photolytic degradation of active substance and metabolites above 10 % ‡

 

Direct photolysis

Chloridazon:
Theoretical DT50 March, April, May, June:
75.6, 36.8, 25.9, 21.6 days

(calculation on algorithms by Frank and Klöpper, information on quantum yield, absorption spectrum used)

Metabolite B:
Theoretical DT50 April, May, June, July, August:
8.72, 6.96, 6.25, 6.95, 7.0 days

(calculation on algorithms by Frank and Klöpper, information on quantum yield, absorption spectrum used)

 

Photolysis in natural water
pH 8, TOC 12-13 mg/L, nitrate < 0.5-2 mg/L, Suntest, 15 days continuous irradiation, 22 °C:

DT50                           continuous irradiation  12/12 h day/night

Chloridazon:           23.3 d                      46.6 d

Metabolite B:           5.9 d                      11.8 d

Metabolite B-1:             1.2 d                            2.4 d

Quantum yield of direct phototransformation in water at S > 290 nm

z · 10 –y  mol · Einstein -1

Readily biodegradable ‡
(yes/no)

No data submitted, none required

 

 

Degradation in water / sediment

Parent Chloridazon

Distribution (e.g. max in water x after n d. Max. sed. x % after n d)

Water / sediment system

pH

water phase

pH sed.

t. oC

DT50 - DT90 whole sys.

St.

(r2)

DT50 - DT90

water

St.

(r2)

DT50 / DT90

sed.

St.

(r2)

Method of calculation

System A

“Krempe”,

lay loam (USDA),

OC 3.6 %

8.5

6.7

 

-/-

 

57.6 / -

 

-/-

 

Model Maker 3.0.4,

 1st order

 

 

 

 

182 / > 200

 

76 / -

 

-/-

 

Timme and Frehse,

1st order

 

 

 

 

200 / > 200

 

35 / >200

 

-/-

 

Best fit from interpolated data

(water, only degradation)

 

 

 

 

 

108.2

 

 

 

Model Maker 4.0

System B

“Ohlau”,

sand, OC 0.19 %

8.0

6.7

 

 

 

1045 / -

 

 

 

Model Maker 3.0.4,

 1st order

 

 

 

 

74 / 96

 

66 / 93

 

 

 

Best fit from interpolated data

(water, only degradation)

 

 

 

 

 

145.6

 

 

 

Model Maker 4.0

Geometric mean/median

 

 

 

125.5*

 

 

 

Model Maker 4.0

* geom.-mean value of DT50 claculated by Model Maker 4.0

 

 

Distribution in water / sediment systems
(active substance) ‡

Maximum values:

Sediment:

34.0 % applied radioactivity (AR) in sediment after 60 days (system A)

16.5/15.8 % AR in sediment after 30/60 days(system B)

 

                        % total applied radioactivity (14C chloridazon)
      DAT           (A)     water    (B)           (A)  sediment     (B)

0                    93.6           89.3                0.6                2.8

0.25              89.6           87.0                5.3                5.5

1                    80.6           80.0              10.8              10.0

2                    77.2           78.5              13.2                8.9

7                    66.8           74.2              22.3              13.3

14                 59.9           72.0              25.9              12.6

30                 47.9           64.6              29.7              16.5

60                 38.5           59.1              34.0              15.8

100               37.1             0.3              27.1                2.2

 

Distribution in water / sediment systems (metabolites) ‡

Metabolite B: maximum values

Water        1.4 % AR after 100 days (system A)

                  42.6 % AR after 100 days (system B)

sediment:0.6 % AR after 30 days (system A)

               7.3 %AR after 100 days (system B)

 

                        % total applied radioactivity (14C chloridazon)
      DAT           (A)     water    (B)           (A)  sediment     (B)

0                    <0.1           <0.1              <0.1              <0.1

0.25              <0.1           <0.1              <0.1              <0.1

1                    <0.1           <0.1              <0.1              <0.1

2                    <0.1           <0.1              <0.1              <0.1

7                    <0.1           <0.1              <0.1              0.2

14                 <0.1           <0.1              <0.1              0.1

30                 1.0             0.5                0.6                0.2

60                 0.8             2.3                0.3                0.5

100               1.4             42.6              0.3                7.3

 

Metabolite B-1: maximum values

Water        < 0.1 % AR in sediment after 100 days (system A, B)

sediment:< 0.1 % AR in sediment after 100 days (system A, B)

 

 

 

PEC surface water and PEC sediment (Annex IIIA, point 9.2.3)

Parent Chloridazon

Parameters used in FOCUSsw step 1 and 2

FOCUS surface water STEP 3. FOCUS SWAH 1.1 tool

Version control no. of FOCUS calculator: x

Molecular weight (g/mol): 221.65, vapour pressure 10-9 Pa, water solubility (mg/L): 422 mg/L (pH 4.4, 20 °C);

KOM (L/kg):  115.4 L/kg (arithm mean); 1/n 0.845 (arithm mean);

DT50 soil (d): 19.1 d field studies, (geom. mean standardised to 20 °C and pF2, n = 7)

DT50 water/sediment system (d): (representative worst case from sediment water studies)

DT50whole system 182 days (system A “Krempe”)

DT50 water: 125.5 days (geom mean)

DT50 sediment: 1000 days (default since no degradation);

Crop interception (%): 0 % pre-emergence

x % partitioning to top x cm layer of sediment, entry route as for surface water, pattern of decline reflecting that measured in the sediment/water study

Parameters used in FOCUSsw step 3 (if performed)

See above

Application rate

Crop: sugar beets and bulb vegetables

Crop interception: 0%

Number of applications: 1

Interval (d): -

Application rate(s): 2600 g as/ha

Application window: March – April (sugar beets), February – May (bulb vegetables), October (2nd season, Scenario D6)

 

 

 

Metabolite B

Parameters used in FOCUSsw step 1 and 2

FOCUS Surface water STEP 3
FOCUS SWASH 1.1 tool

 

Molecular weight: 145.55; vapour pressure 10-9 Pa,; water solubility (mg/L): 422 mg/L (pH 4.4, 20 °C)

Soil or water metabolite:

Kom (L/kg): 29  L/kg (arithm mean); 1/n 0.834 (arithm mean)

DT50 soil (d): 108 d (laboratory studies, geom. mean standardised)

DT50 water/sediment system (d): (representative worst case from sediment water studies)

DT50 water (d)and DT50 sediment (d): no degradation in water and sediment phase (worst case)

Crop interception (%): 0 % pre-emergence

Maximum occurrence observed (% molar basis with respect to the parent)

PECsw initial calculated based on maximum percentage observed, max. in water 42.6 %, in soil 64.8 %.

 

Parameters used in FOCUSsw step 3 (if performed)

See above

Application rate

Crop: sugar beets and bulb vegetables

Number of applications: 1

Interval (d): -

Application rate(s): 2600 g as/ha

Application window: : March-April (sugar beets), February-May (bulb vegetables), October (2nd season, Scenario D6)

Main routes of entry

Spray drift and run-off

 

PEC ground water (Annex IIIA, point 9.2.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

Modelling using FOCUS PELMO 3.3.2 with all 9 standard scenarios.

Formation fraction: metabolite B: 56 % (from parent),

Formation half-lives in soil: metabolite B 34.1 d, metabolite B-1 771.4 d.

Formation fraction of metabolite B-1 from metabolite B: 14 %. No equilibrium between the metabolites.

DT50 soil: 

chloridazon 19.1 d (geometric mean of normalised DT50 values from field studies , n=7, 20 °C, pF2)

metabolite B 108 d (geom. mean of standardised laboratory values, n=4)

metabolite B-1 144.6 d (geom. mean of standardised laboratory values, n=4).

Koc values 199 (arithm mean), 50 (arithm mean), 27 (min) for parent, metabolite B and B-1.

Application rate

2600 g as/ha, pre-emergence, no interception.

- annually  and – triannually (agricultural practice)

Maximum concentration

 

Average annual concentration

(Results quoted for modelling with FOCUS gw scenarios, according to FOCUS guidance)

80th percentile annual leachate concentrations at 1 m depth out of a 20 year simulation period were reported.

(see detailed results in table below)

 

 

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air ‡

Not studied - no data requested

 

Quantum yield of direct phototransformation

2.0 ´ 10-4 mol/Einstein

Photochemical oxidative degradation in air ‡

Tropospheric DT50 of chloridazon: < 7.0 h (derived by Atkinson (1987) method of calculation)

Volatilisation ‡

from plant surfaces: ‡  Ł 1 % (BBA IV 6-1 guideline)

 

from soil: ‡               Ł 4 % (BBA IV 6-1 guideline)

Metabolites

 

 

PECair

Method of calculation

Volatilisation highly unlikely, therefore no calculation performed

 

PEC(a)

Maximum concentration

Not applicable

 

Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology).

Soil:                                         active substance and metabolite B

Water:                                      active substance and metabolite B

Groundwater:                          active substance, metabolite B and

                              metabolite B-1

Air:                    active substance

 

 

 

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)

Not available

Surface water (indicate location and type of study)

Netherlands, Scheldt estuary: Literature study: Monitoring study with systematic sampling from river end to ocean end considering the flush time of the estuary, 3 sampling times in June/July 1998, concentrations of chloridazon at river end: 0.09, 0.15, 0.08 µg/L decreasing towards the sea end of the estuary to 0.01 µg/L (LOQ 0.007 µg/L).

Portugal: Literature study: Large scale, systematic surface water monitoring program of organic pollutants in portuguese rivers (14 months, 46 sampling points, monthly sampling); no detects of chloridazon in any sample (LOQ not given).

 

Remark to both studies: There is no information on the agricultural area in use treated with chloridazon in the catchment area of the investigated waterbody.

Ground water (indicate location and type of study)

Germany, groundwater monitoring programme

                                         number                  

               total        <LOQ   Ł0.1>0.1-1.0  >1.0 µg/L

1999        1446       1433       8          4            1

2000        1482       1470       7          2            1

2001        1425       1419       3          2            1

2002        1701       1682       14         4            0

 

total         6054       6004       32         12           3

 

Air (indicate location and type of study)

Not available

 

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

R 53

 

Non-relevance of metabolites

 

There are no metabolites exceeding the triggers of >10% or 2 times >5% on consecutive time points or still increasing at study termination and likely to exceed 10%. Therefore this risk assessment is carried out for the active substance chloridazon only.

 

6.1       Fate and behaviour in soil

In the scope of this application no assessment was conducted for this aspect.

 

 

 

 

 

 

6.2       Fate and behaviour in water

 

6.2.1    Rate and route of degradation in surface water

The exposure concentrations of the active substance chloridazon in surface water have been estimated for the various proposed uses using calculations of surface water concentrations (in a ditch of 30 cm depth), which originate from spray drift during application of the active substance. The spray drift percen­tage depends on the use. Concentrations in surface water are calculated using the model TOXSWA. The following input data are used for the calculation:

 

TOXSWA:

Active substance chloridazon:

Mean DT50 for degradation in water at 20°C:  124 days

DT50 for degradation in sediment at 20°C: 10000 days (default).

 

Mean Kom for suspended organic matter: 117 L/kg

Mean Kom for sediment: 117 L/kg

 

Saturated vapour pressure: 1x10-9 Pa (temperature dependent)

Solubility in water: 0.422 g/L (temperature dependent)

Molecular weight: 221.6 g/mol

 

Other parameters: standard settings TOXSWA

*

Because there is no standard method to determine separate degradation rates in water and sediment from the water/sediment study, the DT50 system is used for the water phase and degradation in the sediment is assumed to be zero, which is simulated using a DT50 value of 1000 days.

 

In Table M.1, the drift percentages and calculated surface water concentrations for the active substance chloridazon for each intended use are presented.

 

Table M.1 Overview of surface water concentrations for active substance and metabolite(s) following spring and autumn application

No/ Use

Substance

Rate a.s.

[kg/ha]

Freq.

Inter-val

Drift

[%]

PIEC

[mg/L] *

PEC21

[mg/L] *

PEC28

[mg/L] *

 

 

 

 

 

 

Spring

spring

spring

1

chloridazon

2.6

1

-

1.0

12.37

10.96

10.56

2

chloridazon

0.325 + 0.4875 + 0.6175 + 0.6175 + 0.5525

1 + 1 + 2 +1

7 - 14

1.0

10.66

8.757

8.115

3

chloridazon

0.65

1

-

1.0

3.093

2.740

2.640

4

chloridazon

1.95

1

-

1.0

9.278

8.220

7.920

5

chloridazon

2.6

1

-

1.0

12.37

10.96

10.56

* calculated according to TOXSWA

 

The exposure concentrations in surface water are compared to the ecotoxicological threshold values in section 7.2.

 

Monitoring data

The active substance/metabolite chloridazon was observed in the surface water intended for drinking water production. In Table M.2 observed concentrations in the surface water are presented.

 


Table M.2 Monitoring data for chloridazone at drinking water abstraction points from surface water in the period 2001 - 2005

Abstraction point

Number of measurements above detection limit/ Number of measurements

[n/N]

Number of measurements above drinking water limit/ Number of measurements

 [n/N]

 

 

Overall

90-percentile

[μg/L]**

Amsterdam-Rijn kanaal

0/4

0/4

0.0250

Andijk

9/21

0/21

0.0100

Brakel

1/39

7/39

0/39 ***

0.1000/0.0500****

Drentsche Aa (De Punt)

0/5

0/5

0.0250

Heel*)

-

-

-

Nieuwegein*)

-

-

-

Petrusplaat

11/54

12/54

5/54***

0.1000/0.0860****

Scheelhoek*)

-

-

-

Twentekanaal*)

-

-

-

 

 

 

 

Total

 

 

0.100/0.050

*) No data available for this abstraction point.

**) all measurements are taken into account due to lack of clearness which measured values are representative for the uses currently under application

*** data above 0.1 that are below detection limit are included in the first value but deleted from the second one.

**** The first 90-th % is based on the total data set, the second one is calculated after omission of the false positive values due to the high LOD.

 

Some (14) extremely high LOD values (0.2 µg/L), analysis of data is done with these values (raw data set) and after omission of these false positive values.

 

Monitoring results indicate that the substance chloridazon was detected on several occasions.

 

Drinking water criterion

It follows from the decision of the Court of Appeal on Trade and Industry of 19 August 2005 (Awb 04/37 (General Administrative Law Act)) that when considering an application, the Ctb should, on the basis of the scientific and technical knowledge and taking into account the data submitted with the application, also judge the application according to the drinking water criterion ‘surface water intended for drinking water production’. No mathematical model for this aspect is available. This means that any data that is available cannot be adequately taken into account. It is therefore not possible to arrive at a scientifically well-founded assessment according to this criterion. The Ctb has not been given the instruments for testing surface water from which drinking water is produced according to the drinking water criterion. In order to comply with the Court’s decision, however - from which it can be concluded that the Ctb should make an effort to give an opinion on this point – and as provisional measure, to avoid a situation where no authorisation at all can be granted during the development of a model generation of the data necessary, the Ctb has investigated whether the product under consideration and the active substance could give cause for concern about the drinking water criterion.

 

The existing active substance chloridazon is included in the list of substances of concern due to its presence in surface water at drinking water abstraction points as established by VEWIN/Ctb. Therefore, an adequate risk assessment is needed. There are monitoring data concerning the presence of chloridazon in drinking water abstraction points. See the above section on monitoring data.

From table M.2 it can be seen that when the data from the measurements with the high detection limit of 0.2 µg/L are excluded the 90th percentile concentrations of the individual intake points as well as the overall 90th percentile are well below 0.1 µg/L . Although data are missing for the abstraction points Nieuwegein, Heel, Scheelhoek and Twentekanaal it is expected that for these points also the 90th percentile concentrations will not exceed 0.1 µg/L .

 

Therefore, the application of chloridazon is notexpected to exceed the drinking water criterion.

The standards for surface water destined for the production of drinking water are met.

 

6.3       Fate and behaviour in air

In the scope of this application no assessment was conducted for this aspect.

 

6.4       Appropriate fate and behaviour end-points relating to the product and approved uses

See List of End-points.

 

6.5       Data requirements

None

 

6.6       Overall conclusions fate and behaviour

It can be concluded that:

1.      all proposed applications of the active substance chloridazon meet the standards for surface water destined for the production of drinking water.

 

 

7.                  Ecotoxicology

 

Risk assessment is performed in accordance with HTB 1.0.

 

List of Endpoints Ecotoxicology

(DAR, February 2006)

 

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species

Test substance

Time scale

Endpoint

(mg/kg bw/day)

Endpoint

(mg/kg feed)

Birds ‡

Colinus virginianus

as

Acute

LD50 = > 2000 mg as/kg bw

 

 

Preparation

Acute

 

 

Anas platyrhynchos

as

Short-term

LC50 = 1632 mg as/kg bw

LC50 = 4260 mg as/kg feed

Colinus virginianus

as

Long-term

NOAEL =21.8 mg/kg bw

NOAEL =300 mg as/kg feed

Mammals ‡

Female rat

as

Acute

LD50 = 2140 mg as/kg bw

 

 

Preparation

Acute

LD50 = 825mg /kg bw

(LD50 = 536 mg as /kg bw)

 

Rat, 2-generation study

as

Long-term

NOAEL = 37 mg as/kg bw

 

Additional higher tier studies ‡

-

 

 

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Crop and application rate

Indicator species/Category˛

Time scale

ETE

TER1

Annex VI Triggerł

Tier 1 (Birds)

Beets/herbivorous bird

Acute

172

12

10

Beets/herbivorous bird

Short-term

79

21

10

Beets/herbivorous bird

Long-term

42

0.5

5

Beets/insectivorous bird

Acute

141

14

10

Beets/insectivorous bird

Short-term

78.4

21

10

Beets/insectivorous bird

Long-term

78.4

0.3

5

Higher tier refinement long- term (birds)

herbivorous bird: partridge, PT 0.25, food source (PD): 0.31 for leafy crop (RUD 16.5, ftwa 0.34, FIR/bw 1.92), 0.31 for non-grass herbs (RUD 16.5, ftwa 0.34, FIR/bw 0.76), 0.34 for weed seeds (RUD 40, FIR/bw 0.10), 0.04  for insects (RUD 29, FIR/bw 0.27)

insectivorous bird: lapwing, food source (PD x PT): 0.5 for soil vertebrates (RUD 1.22, FIR/bw 0.67), 0.1 for arthropods (RUD 29, FIR/bw 0.31)

Partridge (herbivorous bird)

Long-term

4.1

5.3

5

Lapwing (insectivorous birds feeding on soil invertebrates)

Long-term

3.4

6.4

5

Tier 1 (Mammals)

Beets/medium herbivorous mammal

Acute

63.3

8.5

10

Beets/medium herbivorous mammal

Long-term

15.4

2.4

5

Higher tier refinement (Mammals)

medium herb. mammal: hare, RUD 51.8 (acute), 16.5 (long-term), ftwa 0.34

Hare  (medium herbivorous mammal)

Acute

37.7

14

10

Hare  (medium herbivorous mammal)

Long-term

4.1

9

5

1    in higher tier refinement provide brief details of any refinements used (e.g. residues, PT, PD or AV)

2   for cereals indicate if it is early or late crop stage

3   If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance (e.g. many single species data), it should appear in this column.

 

 

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group

Test substance

Time-scale

(Test type)

Endpoint

Toxicity4

(mg/L)

Laboratory tests ‡

Fish

Oncorhynchus mykiss

as

96 h

LC50 mortality

41.3

Oncorhynchus mykiss

as

28 d

NOEC juvenile growth

3.16

Oncorhynchus mykiss

product BAS 119 33H

96 h

LC50 mortality

50.0 (32.8 as)

Oncorhynchus mykiss

metabolite B

96 h

LC50 mortality

> 100

Oncorhynchus mykiss

metabolite B-1

96 h

LC50 mortality

> 100

Aquatic invertebrate

Daphnia magna

as

48 h

EC50 immobilisation

132

Daphnia magna

as

21 d

NOEC reproduction

10

Daphnia magna

product BAS 119 33H

48 h

EC50 immobilisation

79.5 (52.0 as)

Daphnia magna

metabolite B

48 h

EC50 immobilisation

> 100

Daphnia magna

metabolite B-1

48 h

EC50 immobilisat000000000000000000000ion

> 100

Sediment dwelling organisms

Indicate species.

as

28 d (static)

NOEC

 

 

Metabolite 2

28 d (static)

NOEC

 

Algae

Pseudokirchneriella subcapitata

as

72 h

EC50 biomass
EC50 growth rate
EC103) biomass

EC103)  growth rate

0.6
> 3.0 (3.71))
0.1
0.42

Pseudokirchneriella subcapitata

Product BAS 119 33H

72 h

EC50 biomass
EC50 growth rate
NOEC biomass (EC10)3)
NOEC growth rate (EC10)3)

0.99 (0.65 as)
4.01 (2.62 as)
0.24 (0.16 as)

0.73 (0.48 as)

Pseudokirchneriella subcapitata

metabolite B

72 h

EC50 biomass
EC50 growth rate
EC103) biomass

EC103)  growth rate

> 100
> 100
34.8
> 100

Scenedesmus subspicatus

metabolite B-12)

72 h

EC50 biomass
EC50 growth rate
NOEC biomass (EC10)3)
NOEC growth rate (EC10)3)

18.6
37.1
9.9
12.5

Higher plant

Lemna gibba

as

7 d

EC50 frond no.

EC50 growth rate
NOEC frond no.
NOEC growth

3.03
> 3.16
0.1
0.1

Microcosm or mesocosm tests

study was not performed, not required

1)  extrapolated

2) data are requested for the evaluation of the validity criterion biomass increase.

3)  Since there were still effects at the lowest tested concentration  a value for EC10 instead for NOEC is given. 

4)   indicate whether based on nominal (nom) or mean measured concentrations (mm). In the case of preparations indicate whether endpoints are presented as units of preparation or as

 

Bioconcentration

not relevant, log Pow < 3 (no bioaccumulation potential)

Active substance

Metabolite B1

Metabolite2

Metabolite3

log PO/W

1.2

0.33

 

 

Bioconcentration factor (BCF)1

not relev.

not relevant.

 

 

Annex VI Trigger for the bioconcentration factor

 

 

 

 

Clearance time   (days)  (CT50)

not relev.

not relev.

 

 

                                       (CT90)

not relev.

not relev.

 

 

Level and nature of residues (%) in organisms after the 14 day depuration phase

not relev.

not relev.

 

 

1    only required if log PO/W > 3.

*  based on total 14C or on specific compounds

 

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance

Acute oral toxicity (LD50 µg/bee)

Acute contact toxicity (LD50 µg/bee)

as ‡

> 200

> 200

Preparation1

> 159 µg

BAS 199 33 H/bee

> 200

BAS 199 33 H/bee

Metabolite 1

 

 

Field or semi-field tests

In one cage test no negative effects on the test colonies could be observed regarding mortality, development of the colonies and brood development.

1    for preparations indicate whether endpoint is expressed in units of as or preparation

 

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species

Test

Substance

Endpoint

Effect

(LR50 g/ha1)

Typhlodromus pyri ‡

product  BAS 119  33 H

Mortality/Reproduction

4000

Aphidius rhopalosiphi ‡

product BAS 119 33 H

Mortality/Reproduction

> 4000

1    for preparations indicate whether endpoint is expressed in units of as or preparation

 

Further laboratory studies and extended laboratory studies ‡

Species

Stage

Test

Substance and duration

Dose

(g as/ha)

Endpoint

Adverse Effect

(%)1)

Annex VI

Trigger

Laboratory tests: Standard tests on inert substrates

Chrysoperla carnea

larvae

product
BAS 119 33 H

glass plate, 9 weeks

3924

 

mortality/
reproduction

7.1 / -27.5

50

Pardosa spec.

adult

product
BAS 119 33 H

quartz sand, 14 days

3924

 

mortality/
feeding capacity

0 / 0

50

Aleochara bilineata

adult

product
BAS 119 33 H

quartz sand, 28 days

3924

reproduction

4

50

1) negative values indicate an increase compared to control

 

Field or semi-field tests

no field test performed; data not required

 

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA, points 8.4 and 8.5, Annex IIIA, points 10.6 and 10.7)

Test organism

Test substance

Time scale

Endpoint1

Earthworms

 

as ‡

Acute 14 days

LC50 > 1000 mg as/kg dw soil

 

as ‡

Chronic

not relevant

 

product
BAS 119 33 H

Acute

LC50 > 1000 mg /kg dw soil

(>650 mg as/kg dw soil)

 

product
BAS 119 33 H

Chronic

not relevant

 

Metabolite B

Acute

LC50 > 1132 mg/kg dw soil

 

Metabolite B

Chronic

NOEC 15 mg/kg dw soil

 

Metabolite B1

Acute

LC50 > 1000 mg/kg dw soil

Other soil macro-organisms

Soil mite

as ‡

 

not relevant

 

Preparation

 

not relevant

 

Metabolite B1

 

not relevant

Collembola

 

as ‡

 

not relevant

 

Preparation

 

not relevant

 

Metabolite 1

 

not relevant

Soil micro-organisms

Nitrogen mineralisation

as ‡

28 days

12 % effect at 40 mg BAS 119 33 H/ kg dw soil (26 mg as/kg dw soil) corresponding to 30 kg BAS 119 33 H/ha

 

Metabolite B

28 days

8.2 % effect at 8.53 mg metabolite B/kg dw soil corresponding to 6.40 kg metabolite B/ha

Carbon mineralisation

as ‡

28 days

5.3 % effect at 40 mg BAS 119 33 H/ kg dw soil (26 mg as/kg dw soil) corresponding to 30 kg BAS 119 33 H/ha

 

Metabolite B

28 days

2.9 % effect at 8.53 mg metabolite B/kg dw soil corresponding to 6.40 kg metabolite B/ha

 

Metabolite B1

28 days

6.4 % effect at 1.75 mg metabolite B-1/kg dw soil corresponding to 1.3 kg metabolite B-1/ha

Field studies2

no field test performed; data not required

1    indicate where endpoint has been corrected due to log Po/w > 2.0 (e.g. LC50corr)

2    litter bag, field arthropod studies not included at 8.3.2/10.5 above and earthworm field studies

 

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

Preliminary screening data

Not required for herbicides as ER50 tests should be provided

 

 

 

 

 

 

 

Laboratory dose response tests

Most sensitive species

Test substance

ER50 (g/ha)2 vegetative vigour

ER50 (g/ha)2 emergence

Exposure1

(g/ha)2

TER

(1m distance)

Trigger

Brassica napus

product BAS119 33 H

4781

(3130 as)

> 6000

(> 3924 as)

111

 

53

5

1    based on Ganzelmeier drift data  ( 1m: 2.77 %)

2    for preparations indicate whether dose is expressed in units of as or preparation

 

Additional studies (e.g. semi-field or field studies)

Pesticidial activity of the metabolite B and B-1:

Greenhouse screening test at pre-emergence application to maize, nightshade (black),  henbit, speedwell, sugarbeet, fat-hen, redshank, mustard (white), application rate 0.25, 0.5, 1.0 and 2.0 kg as/ha.

Results: Metabolite B and B-1 showed no herbicidal activity (no damage above 20 %). Chloridazon showed effects (75 % at 0.25 g as/ha for speedwell).

 

Effects on biological methods for sewage treatment (Annex IIA, point 8.7)

Test type/organism

endpoint

Activated sludge

NOEC of oxygen consumption: 500 mg as/L

1000 mg as/L (nominal) highest test conc.: 29 % inhibition of respiration.

 

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment

 

soil

Parent (chloridazon)

water

Parent (chloridazon)

sediment

Parent (chloridazon)

groundwater

Parent (chloridazon)

 

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

 

RMS/peer review proposal

Active substance

N, R 50/53

according to the 26. ATP for the Directive 67/548/7EEC

 

 

RMS/peer review proposal

Preparation BAS119 33 H

R 51/53

 

7.1       Effects on birds

In the scope of this application no assessment was conducted for this aspect.

 

7.2       Effects on aquatic organisms

 

7.2.1    Aquatic organisms

The risk for aquatic organisms for the various uses of the active substance chloridazon is assessed by comparing toxicity values with surface water exposure concentrations from section 6.2. Risk assessment is based on toxicity-exposure ratio’s (TERs).

Toxicity data for aquatic organisms are presented in Table E.1 for the active substance chloridazon. Because the application for authorisation concerns a herbicide, also the effects on macrophytes (aquatic plants) are evaluated .

 

See Table E.1 for the acute and chronic toxicity values to be used in the risk assessment.

 

Table E.1. Overview toxicity endpoints for the active substance chloridazon

Substance

Organism

Lowest

Toxicity value

 

 

L(E)C50 [mg a.s./L]

NOEC

[mg a.s./L]

[mg/L]

Chloridazon

Acute

 

 

 

 

Algae

0.6

 

600

 

Daphnids

132

 

132000

 

Fish

41.3

 

41300

 

Macrophytes

3.03

 

3030

 

Chronic

 

 

 

 

Daphnids

 

6.23

6230

 

Fish

 

3.16

3160

 

 

 

 

 

 

 

 

 

 

Pyramin DF

Acute

 

 

 

 

Algae

0.65

 

650

 

Daphnids

52

 

52000

 

Fish

32.8

 

32800

 

Macrophytes

 

 

 

 

Chronic

 

 

 

 

Daphnids

No data required

 

-

 

Fish

No data required

 

-

 

These toxicity values are compared to the surface water concentrations calculated in section 6.2. Trigger values for acute exposure are 100 for daphnids and fish (0.01 times the lowest L(E)C50-value) and 10 for algae and macrophytes (0.1 times the lowest EC50-value). Trigger values for chronic exposure are 10 for daphnids and fish (0.1 times the lowest NOEC-values).

For acute and chronic risk, the initial concentration is used (PIEC).  

In table E.2 TER values for aquatic organisms are shown.

 


Table E.2a TER values for active substance chloridazon and formulation Pyramin DF: acute

No./use

Substance

TERst

(trigger 10)

TERst

(trigger 100)

TERst

(trigger 100)

TERst

(trigger 10)

 

 

Algae

Daphnid

Fish

Macrophytes

 

 

spring

spring

spring

spring

1

chloridazon

48.5

10671

3339

245

 

Formulation

52.5

4204

2652

n.r.

2

chloridazon

56.3

12383

3874

284

 

Formulation

61.0

4878

3077

n.r.

3

chloridazon

194

42677

13353

980

 

Formulation

210

16812

10605

n.r.

4

chloridazon

64.7

14227

4451

327

 

Formulation

70.1

5605

3535

n.r.

5

chloridazon

48.5

10671

3339

245

 

Formulation

52.5

4204

2652

n.r.

 

 

Table E. 2b TER values for active substance chloridazon and formulation Pyramin DF: chronic

No.

 

Use

TERlt

(trigger 10)

TERlt

(trigger 10)

 

 

Daphnid

Fish

 

 

spring

Spring

1

Sugar beets, fodder beets, beetroot

568

299

2

Sugar beets, fodder beets, beetroot

711

389

3

Onions

2274

1197

4

Flower bulbs

758

399

5

Tree nurseries (seedlings)

568

299

 

Taking the results in Table E.2a and b into account, the acute TERs for fish and Daphnia magna are above the relevant Annex VI triggers of 100 and the acute TERs for algae and Lemna are above the relevant Annex VI triggers of 10. The chronic TERs for fish and Daphnia magna are above the relevant Annex VI triggers of 10. Thus, it appears that for the active substance chloridazon the proposed uses meet the standards for aquatic organisms.

 

7.2.2    Risk assessment for bioconcentration

In the scope of this application no assessment was conducted for this aspect.

 

7.2.3    Risk assessment for sediment organisms

Since the water–sediment study indicates that under 10% of the a.s. chloridazon is found in the sediment after 14 days  and the NOEC for daphnids is below 0.1 mg/L, no risk for sediment organisms is expected.

 

Therefore, the active substance chloridazon meets the standards for sediment organisms.

 


Conclusions aquatic organisms

The proposed application meets the standards for aquatic organisms.

 

7.3       Effects on terrestrial vertebrates other than birds

In the scope of this application no assessment was conducted for this aspect.

 

7.4       Effects on bees

In the scope of this application no assessment was conducted for this aspect.

 

7.5       Effects on any other organisms (see annex IIIA 10.5-10.8)

 

7.5.1    Effects on non-target arthropods

In the scope of this application no assessment was conducted for this aspect.

 

7.5.2    Earthworms

In the scope of this application no assessment was conducted for this aspect.

 

7.5.3    Effects on soil micro-organisms

In the scope of this application no assessment was conducted for this aspect.

 

7.5.4    Effects on activated sludge

In the scope of this application no assessment was conducted for this aspect.

 

7.5.5    Effects on non target-plants

In the scope of this application no assessment was conducted for this aspect.

 

Conclusions any other organisms

In the scope of this application no assessment was conducted for this aspect.

 

7.6       Appropriate ecotoxicological end-points relating tot the product and approved uses

See List of End-points.

 

7.7       Data requirements

-

 

7.8       Classification and labelling

 

Proposal for the classification of chloridazon (symbols and R phrases)

Symbol:

N

Indication of danger: Dangerous for the environment.

 

Risk phrases

50/53

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

 

Proposal for the classification and labelling of the formulation concerning the environment

 

Not applicable. Classification and labelling does not change.

 

 


In the GAP/instructions for use the following has to be stated:

-

 

7.9       Overall conclusions regarding the environment

It can be concluded that:

  1. all proposed applications of the active substance chloridazon meet the standards for aquatic organisms.

 

 

8.                  Efficacy

 

The scope of the application does not require re-evaluation of this aspect.

 

 

9.                  Conclusion

 

The drift reduction measures on the label can be removed as all proposed applications of Pyramin DF meet the standards for aquatic organisms.

 

However, lifting the drift reduction measures may result in exceeding the standards for surface water destined for the production of drinking water (drinking water criterion). Therefore, post-registration monitoring is required to demonstrate that there is no risk the standards will be exceeded.

 

Post-registration monitoring data is to be provided before October 1st, 2011:

-          Post-registration monitoring is required to demonstrate that the new label will not lead to exceeding the standards for surface water destined for the production of drinking water.

 

 

10.      Classification and labelling

 

Classification and labelling of Pyramin DF does not change.

 

 



[1] X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

[2] X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.