Toelatingsnummer 12757 N

TEPPEKI  

 

12757 N

 

 

 

 

 

 

 

 

HET COLLEGE VOOR DE TOELATING VAN

GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

1 UITBREIDING TOELATING

 

Gelet op de aanvraag d.d. 23 april 2010 (20100478 UG) van

 

ISK Biosciences Europe N.V.

De Kleetlaan 12 B

1831 DIEGEM

BELGIË

 

tot uitbreiding van de gebruiksdoeleinden van de toelating als bedoeld in artikel 80, vijfde lid Verordening (EG) 1107/2009 juncto artikel 28, eerste lid, Wet gewasbeschermingsmiddelen en biociden voor het gewasbeschermingsmiddel, op basis van de werkzame stof flonicamid

 

TEPPEKI

 

gelet op 80, vijfde lid Verordening (EG) 1107/2009 juncto artikel 23, eerste lid, Wet gewasbeschermingsmiddelen en biociden,

 

BESLUIT HET COLLEGE als volgt:

 

1.1  Uitbreiding

1.      Het gebruiksgebied van het middel TEPPEKI wordt met ingang van datum dezes  uitgebreid met de toepassing onbedekte teelt van bloembollen en bloemknollen. Voor de gronden waarop dit besluit berust wordt verwezen naar bijlage II bij dit besluit.

2.      De toelating geldt tot 1 januari 2014.

 

1.2  Samenstelling, vorm en verpakking

De toelating geldt uitsluitend voor het middel in de samenstelling, vorm en de verpakking als waarvoor de toelating is verleend.

 

1.3  Gebruik

Het middel mag slechts worden gebruikt met inachtneming van hetgeen in bijlage I onder A bij dit besluit is voorgeschreven.




 

1.4 Classificatie en etikettering

Gelet op artikel 80, vijfde lid Verordening (EG) 1107/2009 juncto artikel 29, eerste lid, sub d, Wet gewasbeschermingsmiddelen en biociden,

 

1.    De aanduidingen, welke ingevolge artikelen 9.2.3.1 en 9.2.3.2 van de Wet milieubeheer en artikelen 14, 15a, 15b, 15c en 15e van de Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten op de verpakking moeten worden vermeld, worden hierbij vastgesteld als volgt:

 

aard van het preparaat: Water dispergeerbaar granulaat

 

werkzame stof:

gehalte:

flonicamid

50 %

 

 

 

letterlijk en zonder enige aanvulling:

 

andere zeer giftige, giftige, bijtende of schadelijke stof(fen):  

-

 

gevaarsymbool:

aanduiding:

 

 

Waarschuwingszinnen: 

 

R52/53            -Schadelijk voor in het water levende organismen; kan in het aquatisch milieu op lange termijn schadelijke effecten veroorzaken.

 

 

Veiligheidsaanbevelingen:

 

S21                 -Niet roken tijdens gebruik.

S36/37d-NL    -Draag geschikte handschoenen en beschermende kleding, ook bij werkzaamheden aan behandeld gewas.

S61                 -Voorkom lozing in het milieu. Vraag om speciale instructies / veiligheidsgegevenskaart.

 

 

Specifieke vermeldingen:

 

DPD01            -Volg de gebruiksaanwijzing om gevaar voor mens en milieu te voorkomen.

DPD14            -Inlichtingenblad aangaande de veiligheid is voor de professionele gebruiker op aanvraag verkrijgbaar.

 

  1. Behalve de onder 1. bedoelde en de overige bij de Wet Milieugevaarlijke Stoffen en Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten voorge­schreven aanduidingen en vermeldingen moeten op de verpakking voorkomen:

 

    1. letterlijk en zonder enige aanvulling:
      het wettelijk gebruiksvoorschrift
      De tekst van het wettelijk gebruiksvoorschrift is opgenomen in Bijlage I, onder A.

 

    1. hetzij letterlijk, hetzij naar zakelijke inhoud:
      de gebruiksaanwijzing
      De tekst van de gebruiksaanwijzing is opgenomen in Bijlage I, onder B.
      De tekst mag worden aangevuld met technische aanwijzingen voor een goede bestrijding mits deze niet met die tekst in strijd zijn
      .

 

c.      bij het toelatingsnummer een cirkel met daarin de aanduiding W.4.

 

De nieuwe etikettering dient bij de eerstvolgende aanmaak op de verpakking te worden aangebracht. Oude verpakkingen mogen worden opgemaakt.

 

 

2 DETAILS VAN DE AANVRAAG

 

2.1 Aanvraag

Het betreft een aanvraag tot uitbreiding van het gebruiksgebied van het middel TEPPEKI (12757 N), een middel op basis van de werkzame stof flonicamid. Het middel is reeds toegelaten als insectenbestrijdingsmiddel in diverse gewassen tot 1 januari 2014. Met onderliggende aanvraag wordt toelating als insectenbestrijdingsmiddel voor  de onbedekte teelt van bloembollen en bloemknollen gevraagd.

 

2.2 Informatie met betrekking tot de stof

Het betreft een middel dat de werkzame stof flonicamid bevat die per 1 september 2010 geplaatst op Annex I van Richtlijn 91/414/EEG en is goedgekeurd krachtens Verordening (EG) No 1107/2009.

 

2.3 Karakterisering van het middel

Teppeki is een middel op basis van flonicamid. Flonicamid behoort tot de groep van pyridine-carboxamiden die selectieve voedselopname remmen bij homoptera. Het eiwit dat hiervoor verantwoordelijk is, is onbekend. Het middel heeft een systemische en translaminaire werking. Het heeft ook een werking op stekend-zuigende insecten. De stof verstoort het voedingsproces van de insecten en deze sterven 1 tot 4 dagen nadat ze met het middel in aanraking zijn gekomen.

 

2.4 Voorgeschiedenis

De aanvraag is op 27 april 2010 ontvangen; op 21 mei 2010 zijn de verschuldigde aanvraagkosten ontvangen. Bij brief d.d. 13 december 2011 is de aanvraag in behandeling genomen.

 

 

3  RISICOBEOORDELINGEN

De beoordeling van deze aanvraag is conform RGB (Hoofdstuk 2) en de Evaluation Manual 1.

 

3.1  Fysische en chemische eigenschappen

De aard en de hoeveelheid van de werkzame stoffen en de in toxicologisch en ecotoxicologisch opzicht belangrijke onzuiverheden in de werkzame stof en de hulpstoffen zijn bepaald. De identiteit van het middel is vastgesteld. De fysische en chemische eigenschappen van het middel zijn vastgesteld en voor juist gebruik en adequate opslag van het middel aanvaardbaar geacht (artikel 28, eerste lid, sub c en e, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van de evaluatie van het middel en de stof staat beschreven in Hoofdstuk 2, Physical and Chemical Properties, in Bijlage II bij dit besluit.


 

3.2  Analysemethoden

De geleverde analysemethoden voldoen aan de vereisten. De residuen die het gevolg zijn van geoorloofd gebruik die in toxicologisch opzicht of vanuit milieu oogpunt van belang zijn, kunnen worden bepaald met algemeen gebruikte passende methoden (artikel 28, eerste lid, sub d, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van de evaluatie van de analysemethoden staat beschreven in Hoofdstuk 3, Methods of Analysis, in Bijlage II bij dit besluit.

 

3.3  Risico voor de mens

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, geen directe of indirecte schadelijke uitwerking heeft op de gezondheid van de mens. De voorlopige vastgestelde maximum residugehalten op landbouwproducten zijn aanvaardbaar (artikel 28, eerste lid, sub b, onderdeel 4 en sub f, Wet gewasbeschermingsmiddelen en biociden).
Het profiel humane toxicologie inclusief de beoordeling van het risico voor de toepasser staat beschreven in Hoofdstuk 4 Mammalian Toxicology, in Bijlage II bij dit besluit.

Het residuprofiel, de vastgestelde maximum residugehalten en de beoordeling van het risico voor de volksgezondheid staan beschreven in Hoofdstuk 5, Residues in bijlage II behorende bij dit besluit.

 

3.4  Risico voor het milieu

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, geen voor het milieu onaanvaardbaar effect heeft, waarbij in het bijzonder rekening wordt gehouden met de volgende aspecten:

-          de plaats waar het middel in het milieu terechtkomt en wordt verspreid, met name voor wat betreft besmetting van het water, waaronder drinkwater en grondwater,

-          de gevolgen voor niet-doelsoorten.

(artikel 28, eerste lid, sub b, onderdeel 4 en 5, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van het risico voor het milieu staat beschreven in Hoofdstuk 6, Environmental Fate and Behaviour, en Hoofdstuk 7, Ecotoxicology, in Bijlage II bij dit besluit.

 

3.5  Werkzaamheid

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, voldoende werkzaam is en geen onaanvaardbare uitwerking heeft op planten of plantaardige producten (artikel 28, eerste lid, sub b, onderdelen 1 en 2, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van het aspect werkzaamheid staat beschreven in Hoofdstuk 8, Efficacy, in Bijlage II bij dit besluit.

 

3.6  Eindconclusie

Bij gebruik volgens het gewijzigde Wettelijk Gebruiksvoorschrift/Gebruiksaanwijzing is de uitbreiding voor de gevraagde doeleinden van het middel TEPPEKI op basis van de werkzame stof flonicamid voldoende werkzaam en heeft het geen schadelijke uitwerking op de gezondheid van de mens en het milieu (artikel 80, vijfde lid Verordening (EG) 1107/2009 juncto artikel 28, eerste lid, Wet gewasbeschermingsmiddelen en biociden).

 

 




 

Degene wiens belang rechtstreeks bij dit besluit is betrokken kan gelet op artikel 119, eerste lid, Wet gewasbeschermingsmiddelen en biociden en artikel 7:1, eerste lid, van de Algemene wet bestuursrecht, binnen zes weken na de dag waarop dit besluit bekend is gemaakt een bezwaarschrift indienen bij: het College voor de toelating van gewasbeschermingsmiddelen en biociden (Ctgb), Postbus 217, 6700 AE WAGENINGEN. Het Ctgb heeft niet de mogelijkheid van het elektronisch indienen van een bezwaarschrift opengesteld.

 

 

Wageningen, 28 juni 2013

 

 

HET COLLEGE VOOR DE TOELATING VAN  GEWASBESCHERMINGSMIDDELEN EN  BIOCIDEN,





ir. J.F. de Leeuw

voorzitter



HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE I bij het besluit d.d. 28 juni 2013 tot uitbreiding van de toelating van het middel TEPPEKI, toelatingnummer 12757 N

 

A.

WETTELIJK GEBRUIKSVOORSCHRIFT

 

 

Toegestaan is uitsluitend het gebruik als insectenbestrijdingsmiddel in de teelt van:

  1. aardappelen
  2. wintertarwe, zomertarwe en triticale
  3. appel, peer en vruchtbomenteelt en vruchtbomenonderstammen van appel en peer
  4. bloemisterijgewassen
  5. bedekte teelt van bol- en knolbloemen
  6. onbedekte teelt van bloembollen en bloemknollen
  7. bloemzaadteelt
  8. boomkwekerijgewassen en vaste planten
  9. openbaar groen
  10. bedekte teelt van veredelings- en zaadteelten van groente en akkerbouwgewassen

 

Veiligheidstermijn

De termijn tussen de laatste toepassing en de oogst mag niet korter zijn dan:

14 dagen voor aardappelen

28 dagen voor wintertarwe, zomertarwe en triticale

24 dagen voor appel en peer

 

Resistentiemanagement

Om resistentieopbouw te voorkomen mag u dit product of andere producten die flonicamid bevatten, niet vaker gebruiken dan twee keer per teelt voor aardappel en wintertarwe en drie keer per seizoen in alle overige teelten. Om de kans op resistentie te beperken is het aan te bevelen om af te wisselen met een middel uit een andere chemische groep. Na twee behandelingen dient ten tenminste één bespuiting te worden uitgevoerd met een middel uit een andere chemische groep.

 

Voor geïntegreerde teelten (waaronder begrepen alle kasteelten, boomteelt en fruitteelt):

Dit middel is schadelijk voor niet-doelwit arthropoden. Vermijd onnodige blootstelling.

 

Gevaarlijk voor bijen en hommels. Alleen toepassen na zonsondergang.

 

Het middel is uitsluitend bestemd voor professioneel gebruik.

 

B.

GEBRUIKSAANWIJZING

 

Algemeen

Teppeki is een middel met een systemische en translaminaire werking. Het middel dient toegepast te worden in het begin van de bladluispopulatieontwikkeling.

 

Toepassingen

 

Consumptie-, fabrieks- en pootaardappelen ter bestrijding van o.a. wegedoornluis, groene perzikluis, aardappeltopluis en vuilboomluis om zuigschade te voorkomen.

Maximaal twee maal toepassen per seizoen met een minimum interval van 21 dagen.

Dosering: 0,16 kg/ha

 

Wintertarwe, zomertarwe en triticale, ter bestrijding van bladluizen om zuigschade te voorkomen.

Het betreft een voorjaarstoepassing met maximaal twee toepassingen per seizoen, met een minimum interval van 21 dagen.

Dosering: 0,14 kg/ha

 

Appel en peer, vruchtbomenteelt en vruchtbomenonderstammen van appel en peer ter bestrijding van bladluizen.

Maximaal drie maal toepassen per seizoen met een minimum interval van 21 dagen. Na de tweede bespuiting een behandeling uitvoeren met een middel uit een andere chemische groep.

Dosering: 0,14 kg/ha

 

Bloemisterijgewassen, ter bestrijding van bladluizen.

Maximaal drie maal toepassen per seizoen met een minimum interval van 21 dagen. Na de tweede bespuiting een behandeling uitvoeren met een middel uit een andere chemische groep.

Dosering: 0,14 kg/ha of 0,014% (14 g/100 L water)

Als er nog geen ervaring is opgedaan met het middel dient er eerst een proefbespuiting uitgevoerd te worden om de verdraagzaamheid van het gewas te testen.

 

Bedekte teelt van bol- en knolbloemen, ter bestrijding van bladluizen.

Maximaal drie maal toepassen per seizoen met een minimum interval van 21 dagen. Na de tweede bespuiting een behandeling uitvoeren met een middel uit een andere chemische groep.

Dosering: 0,014% (14 g/100 L water)

 

Onbedekte teelt van bloembollen en bloemknollen ter bestrijding van bladluizen.

Maximaal drie maal toepassen per seizoen met een minimum interval van 21 dagen. Na de tweede bespuiting een behandeling uitvoeren met een middel uit een andere chemische groep.

Dosering: 0,14 kg/ha

 

Bloemzaadteelt, ter bestrijding van bladluizen.

Maximaal drie maal toepassen per seizoen met een minimum interval van 21 dagen. Na de tweede bespuiting een behandeling uitvoeren met een middel uit een andere chemische groep.

Dosering: 0,14 kg/ha

 

Als er nog geen ervaring is opgedaan met het middel dient er eerst een proefbespuiting uitgevoerd te worden om de verdraagzaamheid van het gewas te testen. De invloed van het middel op de kiemkracht van het zaad is niet getoetst.

 

Boomkwekerijgewassen en vaste planten, ter bestrijding van bladluizen.

Maximaal drie maal toepassen per seizoen met een minimum interval van 21 dagen. Na de tweede bespuiting een behandeling uitvoeren met een middel uit een andere chemische groep. De werking op de beukenbladluis is niet getoetst.

Dosering: 0,14 kg/ha of 0,014% (14 g/100 L water)

 

Openbaar groen, ter bestrijding van bladluizen.

Maximaal drie maal toepassen per seizoen met een minimum interval van 21 dagen. Na de tweede bespuiting een behandeling uitvoeren met een middel uit een andere chemische groep.

Dosering: 0,14 kg/ha

 

Bedekte teelt van veredelings- en zaadteelten van groente en akkerbouwgewassen, ter bestrijding van bladluizen

Maximaal drie maal toepassen per seizoen met een minimum interval van 21 dagen. Na de tweede bespuiting een behandeling uitvoeren met een middel uit een andere chemische groep. De invloed van het middel op de kiemkracht van het zaad is niet getoetst.

Dosering: 0,014% (14 g/100 L water)

 

Waarschuwing

Voor gewassen uit de groepen van bloemisterijgewassen, boomkwekerijgewassen, bol- en knolbloemgewassen geldt, gezien de grote variatie in gewassen en rassen, dat, indien er nog geen ervaring is opgedaan met het middel in het betrokken gewas of ras, een proefbespuiting uitgevoerd dient te worden om te zien of het gewas of ras het middel verdraagt.

Voor de zaadteelten geldt dat aangeraden wordt om op kleine schaal te toetsen of het middel van invloed is op de kiemkracht van het gewas of ras.

 

 



HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE II bij het besluit d.d. 28 juni 2013 tot uitbreiding van de toelating van het middel TEPPEKI, toelatingnummer 12757 N

 

Contents

                                                                                                                                                      

 

                                                                                                                                              Page

1.     Identity of the plant protection product 3

2.     Physical and chemical properties. 4

3.     Methods of analysis. 9

4.     Mammalian toxicology. 11

5.     Residues. 18

6.     Environmental fate and behaviour. 19

7.     Ecotoxicology. 30

8.     Efficacy. 46

9.     Conclusion.. 48

10.       Classification and labelling.. 49

 


1.      Identity of the plant protection product

 

1.1       Applicant

ISK Biosciences Europe N.V.

De Kleetlaan 12 B

1831 DIEGEM

België

 

1.2       Identity of the active substance

Common name

Flonicamid

Name in Dutch

Flonicamid

Chemical name

N-cyanomethyl-4-trifluoromethylnicotinamide [IUPAC]

CAS no

158062-67-0

EC no

not allocated

 

The active substance was included in Annex I of Directive 91/414/EEC on September 1st, 2010.

From 14 June 2011 forward, according to Reg. (EU) No 540/2011 the substance is approved under Reg. (EC) No 1107/2009, repealing Directive 91/414/EEC.

 

1.3       Identity of the plant protection product

Name

Teppeki

Formulation type

WG

Content active substance

500 g/kg pure flonicamid

 

The formulation is identical to that assessed for the inclusion of the active substance in Annex I of Directive 91/414/EEC.

 

1.4       Function

Insecticide.

 

1.5       Uses applied for

See GAP (Appendix I).

 

1.6       Background to the application

It concerns an extension.

 

1.7       Packaging details

1.7.1    Packaging description

Material:

HDPE

Capacity:

1L or 2L (0.5 or 1kg)

Type of closure and size of opening:

56mm opening, leak-proof cap

Other information

Not applicable (not subject to ADR requirements, because it is not classified as a dangerous good for transport)

 

1.7.2    Detailed instructions for safe disposal

See application form and MSDS (no particular recommendations).

 

 

 

 

 

2.      Physical and chemical properties

 

2.1              Active substance: flonicamid

Data on the identity and the physical and chemical properties is taken from the List of Endpoints. The final List of Endpoints presented below is taken from the EFSA Scientific report on flonicamid (2010 8(1); 1445). Where relevant, some additional remarks/information are given in italics.

 

Identity

Chemical name (IUPAC) ‡

N-cyanomethyl-4-(trifluoromethyl)nicotinamide

Chemical name (CA) ‡

N-(cyanomethyl)-4-(trifluoromethyl)-3-pyridincarboxamide

CIPAC No 

763

CAS No 

158062-67-0

EC No (EINECS or ELINCS) ‡

not allocated

FAO Specification (including year of publication) ‡

No FAO specification is available

Minimum purity of the active substance as manufactured 

minimum 960 g/kg

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Toluene

max 3 g/kg

Molecular formula ‡

C9H6F3N3O

Molecular mass ‡

229.16 g/mol

Structural formula ‡

 

 

Physical-chemical properties

Melting point (state purity) ‡

157.5°C (99.7%)

Boiling point (state purity) ‡

No boiling point observed (99.7%)

Temperature of decomposition (state purity)

306-320°C (99.7%)

Appearance (state purity) ‡

PAI : off white:

Solid powder, odourless

TGAI : Light beige (21°C), solid powder (24.9°C)

Vapour pressure (state temperature, state purity) ‡

2.55 ´10-6 Pa at 25°C

9.43 ´10-7 Pa at 20°C (99.7%)

Henry’s law constant ‡

4.2 ´10-8 (20°C) (99.7%) calculation based

Solubility in water (state temperature, state purity and pH) ‡

5.2 g/L at 20°C (99.7%)

Solubility in organic solvents ‡
(state temperature, state purity)

 

PAI (99.7%) g/L at 20°C

TGAI (98.7%) g/L at 20°C

Acetone

163.5

157.1

Ethyl acetate

34.2

34.9

Methanol

104.3

89.0

Dichloromethane

4.5

4.0

Toluene

0.55

0.30

Hexane

0.0002

0.0003

n-Octanol

3.0

2.6

Acetonitrile

132.8

111.4

Isopropyl alcohol

18.7

14.7

 

 

 

Surface tension ‡
(state concentration and temperature, state purity)

47.3 mN/m at 25±1°C

47.0 mN/m at 40±1°C

Concentration tested 90 % of water solubility. Although the concentration tested is not correct as it is greater than 1 g/L it is clear that the material is surface active.

Surface active  (98.7%)

Partition co-efficient ‡
(state temperature, pH and purity)

Log Pow = -0.24 at 20°C (pH not measured) (calculated value)

Dissociation constant (state purity) ‡

pKa = 11.6 at 20 ±1°C (99.7%)

UV/VIS absorption (max.) incl. e
(state purity, pH)

λmax                                                  ε

                                                           (L/(cm x mol))

265 nm in neutral solution (99.7%)    3870

266 nm in acidic solution                   3890

204 and 270 nm in basic solution     13200 and                                                                  4190

No significant absorption above 290 nm

Flammability ‡ (state purity)

Not highly flammable  (98.7%)

Explosive properties ‡ (state purity)

Not explosive (expert statement)

Oxidising properties ‡ (state purity)

Not oxidizing (expert statement)

 

EFSA Journal 2010;8(5):1445 stated the following data requirement: “New technical material specification or a justification and quality data support the available technical specification (relevant for all representative uses evaluated; identified by RMS, confirmed by PRAPeR”. The applicant submitted to RMS France five batch analysis data from three commercial production sites. The RMS France has evaluated the data and confirmed the technical equivalence of the commercial production sites. The assessment by the RMS was included in addenda to the DAR.

 

2.1       Plant protection product: Teppeki

Data about plant protection product are taken from the DAR.

The range of the application concentration of the plant protection product is 0.014 - 0.08 %

Section

(Annex point)

Study

Guidelines and GLP

Findings

Evaluation and conclusion

B.2.2.1 (IIIA 2.1)

Appearance: physical state

GLP

Visual

Solid, free flowing cylindrical granules

Acceptable

B.2.2.2 (IIIA 2.1)

Appearance: colour

GLP

Visual

Brown

Acceptable

B.2.2.3 (IIIA 2.1)

Appearance: odour

GLP

Visual

Slight odour of ammonia

Acceptable

B.2.2.4 (IIIA 2.2)

Explosive properties

Theoretical assessment and DSC analysis

Not explosive (DSC: < 500 J/g decomposition energy)

Acceptable

B.2.2.5 (IIIA 2.2)

Oxidising properties

Theoretical assessment

Not oxidising

Acceptable

B.2.2.6 (IIIA 2.3)

Flammability

Theoretical assessment

Not highly flammable, based on the individual properties of the product components.

Acceptable

B.2.2.7 (IIIA 2.3)

Auto-flammability

Theoretical assessment

Not self-igniting, based on the individual properties of the product components.

Acceptable

B.2.2.8 (IIIA 2.3)

Flash point

 

Not applicable

 

B.2.2.9 (IIIA 2.4)

Acidity / alkalinity

 

Not applicable

 

B.2.2.10 (IIIA 2.4)

pH

GLP

CIPAC MT75.2

pH = 8.3 at 22 oC (1% dispersion)

Acceptable

B.2.2.11 (IIIA 2.5)

Surface tension

 

Not applicable

 

B.2.2.12 (IIIA 2.5)

Viscosity

 

Not applicable

 

B.2.2.13 (IIIA 2.6)

Relative density

 

Not applicable

 

B.2.2.14

(IIIA 2.6)

Bulk (tap) density

GLP

CIPAC MT169

Density: 0.543 g/ml

Tapped density: 0.582 g/ml

Acceptable

B.2.2.14 (IIIA 2.7)

Storage stability

GLP

Stable for 2 weeks at 54 oC in HDPE

 

Properties determined before and after storage: appearance, packaging stability, a.i. content, pH, tap density, foam persistence, suspensibility, spontaneity of dispersion, wet sieve residue, particle size distribution, dust content, attrition resistance.

 

No significant changes were observed after storage.

 

 

Acceptable.

Determination of the impurity toluene before and after storage is not required since formation of this impurity during storage is unlikely to occur.

 

Wettability was not determined after storage. This is considered acceptable, based on the overall stability of the product during storage.

B.2.2.15 (IIIA 2.7)

Shelf life

GLP

Stable for 2 years at ambient temperatures in HDPE

 

Properties determined before and after storage: appearance, packaging stability, a.i. content, pH, tap density, foam persistence, suspensibility, spontaneity of dispersion, wet sieve residue, particle size distribution, dust content, attrition resistance.

 

No significant changes were observed after storage.

 

Acceptable.

Determination of the impurity toluene before and after storage is not required since formation of this impurity during storage is unlikely to occur.

 

Wettability was not determined after storage. This is considered acceptable, based on the overall stability of the product during storage.

B.2.2.16

(IIIA 2.8)

Wettability

GLP

CIPAC MT 53.3.1

1 second

Acceptable

B.2.2.17 (IIIA 2.8)

Persistent foaming

GLP

CIPAC MT47.2

0.16% in CIPAC D water: 60 ml after 1 minute.

Acceptable

B.2.2.18

(IIIA 2.8)

Suspensibility

GLP

CIPAC MT168

In CIPAC D water:

0.008%: 100%

0.16%: 99.8%

Acceptable

B.2.2.19

(IIIA 2.8)

Spontaneity of dispersion

GLP

CIPAC MT174

84.6%

 

 

Acceptable

 

No information concerning the type of water used was presented in the DAR. The CIPAC handbook requires the use of CIPAC D water for this test. It is therefore assumed the test was performed in CIPAC D water.

B.2.2.20

(IIIA 2.8)

Dilution stability

 

Not applicable

 

B.2.2.21

(IIIA 2.8)

Dry sieve test

 

Not applicable

 

B.2.2.22

(IIIA 2.8)

Wet sieve test

GLP

CIPAC MT167

0.02% w/w on a 75 micron sieve

Acceptable

B.2.2.23

(IIIA 2.8)

Particle size distribution

GLP

CIPAC MT170

x1 = 250 μm (where Rx >= 90%)

x2 = 850 μm (where Rx =< 10%)

Acceptable

B.2.2.24

(IIIA 2.8)

Content of dust/fines

GLP

CIPAC MT171

9.2 mg

Nearly dust free

Acceptable

B.2.2.25

(IIIA 2.8)

Attrition and friability

GLP

CIPAC MT178

97.1%

 

Acceptable

 

During the EU evaluation it was noted that no additional risk for the operator is expected, because the product is not toxic by inhalation, an irritant or sensitizer.

B.2.2.26 (IIIA 2.8)

Emulsifiability, re-emulsifiability and emulsion stability

 

Not applicable

 

B.2.2.27

(IIIA 2.8)

Stability of dilute emulsion

 

Not applicable

 

B.2.2.28

(IIIA 2.8)

Flowability

GLP

CIPAC MT172

% test material retained on the test sieve after

5 liftings: 0% w/w

10 liftings: 0%w/w

Acceptable

B.2.2.29

(IIIA 2.8)

Pourability (rinsibility)

 

Not applicable

 

B.2.2.30

(IIIA 2.8)

Dustability

 

Not applicable

 

B.2.2.31

(IIIA 2.8)

Adherence and distribution to seeds

 

Not applicable

 

2.9.1

Physical compatibility with other products

 

Not applicable

 

2.9.2

Chemical compatibility with other products

 

Not applicable

 

 

Conclusion

The physical and chemical properties of the active substance and the plant protection product are sufficiently described by the available data. Neither the active substance nor the product has any physical or chemical properties, which would adversely affect the use according to the proposed use and label instructions.

 

2.3       Data requirements

None.

 

 

3.      Methods of analysis

 

Description and data on the analytical methods is taken from the List of Endpoints. The final List of Endpoints presented below is taken from the EFSA Scientific report on flonicamid ((2010) 8(1); 1445). Where relevant, some additional remarks/information are given in italics.

 

3.1  Analytical methods in technical material and plant protection product

Technical as (analytical technique)

HPLC/UV

Impurities in technical as (analytical technique)

HPLC/UV, GC/FID and Karl Fisher titration

Plant protection product (analytical technique)

HPLC/UV(flonicamid)

GC/MS (toluene)

 

Conclusion

These analytical methods have been assessed and are considered to be acceptable.

 

3.2  Residue analytical methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

HPLC-MS/MS

LOQ : 0.01 mg/kg (wheat grain, tomatoes and apples) and 0.02 mg/kg in wheat straw for each compound (flonicamid and its metabolites TFNG, TFNA and TFNA-AM)

And

HPLC-MS/MS

LOQ : 0.05 mg/kg (peach and potatoes) and 0.10 mg/kg (wheat straw) for each compound (flonicamid and its metabolites TFNG, TFNA and TFNA-AM)

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

HPLC-MS/MS (an enforcement method is not required due to the fact that no MRLs are proposed)

LOQ: 0.01 mg/L for milk

LOQ: 0.01 mg/kg for bovine, poultry tissues and poultry eggs

LOQ: 0.025 mg/kg for the other ruminant tissues

for each compound (flonicamid and its metabolites OH-TFNA-AM, TFNA and TFNA-AM)

Soil (analytical technique and LOQ)

 

 

HPLC-MS/MS

LOQ: 0.005 mg/kg (flonicamid, TFNG, TFNG-AM, TFNA, TFNA-AM and TFNA-OH )

Water (analytical technique and LOQ)

 

HPLC-MS/MS

LOQ: 0.1 µg/L (flonicamid, TFNA, TFNG, TFNA-AM, TFNA-OH and TFNG-AM in drinking water and surface water)

Air (analytical technique and LOQ)

 

 

HPLC-UV

LOQ: 1.5 µg/m3 (flonicamid)

Body fluids and tissues (analytical technique and LOQ)

 

Not required; the active substance is not classified as toxic or very toxic.

 

Based on the proposed use of the plant protection product (potato, cereals, apple, pear and other orchard fruit trees), analytical methods for determination of residues in food/feed of plant origin are required for dry and watery matrices.

 

Definition of the residue and MRLs for flonicamid

Matrix

Proposed definition of the residue for monitoring

Proposed MRL

Food/feed of plant origin

flonicamid, TFNA and TFNG expressed as flonicamid

EU MRL: 0.05* mg/kg and above

Food/feed of animal origin

flonicamid and TFNA-AM expressed as flonicamid

EU MRL: 0.02* mg/kg (fat, milk), 0.03 mg/kg (meat, liver, kidney, offal), 0.05 mg/kg (egg), 0.03* mg/kg (others)

 

Required LOQ

Soil

flonicamid

0.05 mg/kg (default)

Drinking water

flonicamid

0.1 µg/L (drinking water guideline)

Surface water

flonicamid

0.1 µg/L (HTB 1.0)

Air

flonicamid

7.5 µg/m3 (derived from the AOEL according to SANCO/825/00)

Body fluids and tissues

The active substance is not classified as (very) toxic thus no definition of the residue is proposed.

 

 

The residue analytical methods, included in the above List of Endpoints, are suitable for monitoring of the proposed MRLs.

 

The residue analytical methods for water, soil and air, evaluated in the DAR, are acceptable and suitable for monitoring of residues in the environment.

 

Conclusion

The submitted analytical methods meet the requirements. The methods are specific and sufficiently sensitive to enable their use for enforcement of the MRL’s and for monitoring of residues in the environment.

 

3.3       Data requirements

None

 

3.4       Physical-chemical classification and labelling

 

Proposal for the classification and labelling of the formulation concerning physical chemical properties

Professional use

Substances, present in the formulation, which should be mentioned on the label by their chemical name (other very toxic, toxic, corrosive or harmful substances):

-

Symbol:

-

Indication of danger:

-

R phrases

-

-

 

 

 

S phrases

S21

When using do not smoke

 

 

 

Special provisions:
DPD-phrases

-

-

 

 

 

Child-resistant fastening obligatory?

Not applicable

Tactile warning of danger obligatory?

Not applicable

 

Explanation:

Hazard symbol:

-

Risk phrases:

-

Safety phrases:

-

Other:

-

 

In the GAP/instructions for use the following has to be stated:

-

 

 

4.      Mammalian toxicology

 

List of Endpoints

Flonicamid is an existing active substance, included in Annex I of Directive 91/414/EEC. The final List of Endpoints presented below is taken from the EFSA Journal on flonicamid (2010) 8(5); 1445. Where relevant some additional remarks/information are given in italics.

 



Absorption, distribution, excretion and metabolism in mammals (Annex IIA, point 5.1)

Rate and extent of absorption ‡

Rapid and extensive > 80% within 24 h

Tmax = 0.4 h at low dose (2 mg/kg)

Distribution ‡

Extensive with peak tissue concentrations £ peak blood concentrations except in liver, kidney, adrenals, thyroid and GI tract.

Potential for accumulation ‡

None

Rate and extent of excretion ‡

Rapid mostly via urine 70 – 80% within 24 h; low biliary excretion (~ 5% AD).

Metabolism in animals ‡

Proceeds in the rat by nitrile & amide hydrolysis, N-oxidation, hydroxylation of pyridine ring

Main component in urine, faeces and bile: IKI-220 (up to 70% AD); main metabolite in urine and bile: TFNA-AM (up to 27% AD); minor metabolites: TFNA and conjugates, TFNG-AM, TFNA-AM N oxide conjugate, OH-TFNA-AM, TFNG

Toxicologically relevant compounds (animals and plants) ‡

Parent substance

Toxicologically significant compounds (environment) ‡

Parent substance, impurity toluene

 

Acute toxicity (Annex IIA, point 5.2)

Rat LD50 oral ‡

884 – 1768 mg/kg bw (m – f)            Xn, R22

Rat LD50 dermal ‡

> 5000 mg/kg (m/f)

Rat LC50 inhalation ‡

> 4.9 mg/L (4 h, nose-only aerosol) (MMAD 4.8 μm)

Skin irritation ‡

non irritant

Eye irritation ‡

non irritant

Skin sensitization (test method used and result) ‡

not sensitising (M & K test)

 

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect ‡

kidney (rat, dog), liver (mouse, rat), haematopoietic system (mouse, dog)

Relevant oral NOAEL ‡

8 mg/kg bw/d (dog 90-d and 52 w)

60 mg/kg bw/d (rat, 90-d)

15.3 mg/kg bw/d (mouse, 90-d)

Relevant dermal NOAEL ‡

1000 mg/kg bw/d (rat, 28-day study)

Relevant inhalation NOAEL ‡

no study – not required

 

Genotoxicity (Annex IIA, point 5.4) ‡

 

 

No genotoxic potential

The genotoxic potential of flonicamid was investigated in vitro in an Ames test, a mammalian cell gene mutation assay using L5178Y mouse lymphoma cells and a mammalian cytogenetic assay using Chinese hamster CHL cells. All these in vitro studies gave negative results.

Regarding in vivo data, a micronucleus study with mice, an UDS assay with rats and a Comet assay with mice were negative.

 

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect ‡

Rat: kidneys, liver, anaemia

Mouse: lungs, liver, haematopoietic system

Lowest relevant NOAEL / NOEL ‡

7.32 mg/kg bw/d (rat, 2-yr)

10 mg/kg bw/d (mouse, 18-month)

Carcinogenicity ‡

Rat: nasal tumours not considered relevant for humans.

Mouse: strain- and species-specific lung tumours of unknown relevance to humans.

 

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction target / critical effect ‡

Reproduction: no adverse effect on reproductive parameters

Parents: kidneys lesions, reduced ovary/adrenal weights

Offspring: delayed vaginal opening and reduced uterus weight in F1 weanlings

Relevant parental NOAEL ‡

18 mg/kg bw/d

Relevant reproductive NOAEL ‡

109 mg/kg bw/d (highest dose tested)

Relevant offspring NOAEL

30 mg/kg bw/d

 

Developmental target / critical effect ‡

Development (rat): increased placental weight, increased skeletal variations (cervical ribs)

Development (rabbit): increased visceral anomalies without maternal toxicity

Parental: liver and kidney (rat), reduced weight gain and food consumption (rabbit)

Relevant maternal NOAEL ‡

Rat: 100 mg/kg bw/d

Rabbit: 7.5 mg/kg bw/d

Relevant developmental NOAEL ‡

Rat: 100 mg/kg bw/d          Repro Cat. 3, R63?

Rabbit: 2.5 mg/kg bw/d

 

Neurotoxicity / Delayed neurotoxicity (Annex IIA, point 5.7) ‡

Acute neurotoxicity ‡

 

NOAEL 600 mg/kg bw (rat)

Repeated neurotoxicity ‡

 

NOAEL >625 mg/kg bw/day (rat, 90-day)

Delayed neurotoxicity

No study – Not required

 

Other toxicological studies (Annex IIA, point 5.8) ‡

Mechanism studies ‡

Lung cell cycle analysis (BrdU index): dose response relationship in the mouse (NOEL 12.3 mg/kg bw/d); reversibility study; comparative study in the rat and the mouse

 

Lung cell cycle analysis (BrdU index) with TFNG, TFNA, TFNA-AM: no effect on BrdU index after a 3 or 7-d treatment at 318-402 mg/kg bw/d

 

Comparison of lung cell cycle analysis after flonicamid or isoniazid dietary exposure in 3 mouse strains: BrdU index increased in CD-1 mouse strain only after flonicamid and no strain specificity after isoniazid.

Studies performed on metabolites or impurities ‡

Acute oral toxicity of metabolites

TFNA oral LD50: >2000 mg/kg. No clinical signs

TFNA-AM oral LD50: >2000 mg/kg. No clinical signs

TFNA-OH oral LD50: >2000 mg/kg. No clinical signs

TFNG oral LD50: >2000 mg/kg. No clinical signs

TFNG-AM oral LD50:>2000 mg/kg. No clinical signs

 

Genotoxicity testing of metabolites

Bacterial reverse mutation assays: negative for TFNA; TFNA-AM; TFNA-OH; TFNG and TFNG-AM

 

90-day toxicity studies on metabolites

TFNA: NOAEL 136 mg/kg bw/d

TFNG: NOAEL 135 mg/kg bw/d

 

Medical data (Annex IIA, point 5.9) ‡

 

Not applicable. Flonicamid has not been marketed. No adverse health effects have been reported in manufacturing plant personnel.

 

Summary (Annex IIA, point 5.10)

Value

Study

Safety factor

ADI ‡

0.025 mg/kg bw

Rabbit developmental

100

AOEL ‡

0.025 mg/kg bw

Rabbit developmental

100

ARfD (acute reference dose) ‡

0.025 mg/kg bw

Rabbit developmental

100

 

Dermal absorption (Annex IIIA, point 7.3) ‡

Teppeki® 50% WG

concentrate: 7.46 %; spray dilution: 13 %

 

Local effects

Flonicamid does not produce local effects, neither after a single nor repeated exposure.

 

Data requirements active substance

No additional data requirements are identified.

 

 

 

4.1       Toxicity of the formulated product (IIIA 7.1)

The formulation Teppeki does not need to be classified on the basis of its acute oral (LD50 rat >2000 mg/kg bw), dermal (LD50 rat >2000 mg/kg bw), and inhalation toxicology (LC50 rat > 5.3 mg/L).

The formulation Teppeki does not need to be classified for dermal and eye irritation and does not have sensitising properties in a Buehler test.

 

4.1.1    Data requirements formulated product

No additional data requirements are identified.

 

4.2       Dermal absorption (IIIA 7.3)

See List of Endpoints. One in vitro study was presented in the DAR (with Teppeki (manufacturer's code number: IKI-220 50% WG, IKI-220 50WG, IBE 3894)). A field use dilution of 0.4 g flonicamid/L was tested with human skin samples and gave a dermal absorption value of 7.46%. Results from a new in vitro study with the representative formulation were provided in addendum 2 to B.6 (France, 2009), showing a value of 13% with human skin samples when a field use dilution of 0.07 g flonicamid/L was tested. Therefore it was agreed to use dermal absorption values of 7.46% for the concentrate and 13% for the dilution in the DAR.

 

The field concentration range specified in the GAP table for this application is 0.18 - 0.47 g flonicamid/L. As in general a lower field concentration results in a higher dermal absorption percentage, a dermal absorption value of 7.46% for the concentrate (obtained with a field use dilution of 0.4 g flonicamid/L) and a value of 13% for the dilution (obtained with the formulation containing 0.07 g flonicamid/L) will be used in the risk assessment as these figures are worst-case for this application.

 

4.3       Available toxicological data relating to non-active substances (IIIA 7.4)

The available toxicological data relating to non-active substances will be taken into account in the classification and labelling of the formulated product.

 

4.4       Exposure/risk assessments

 

Overview of the intended uses

The intended uses are listed under Appendix 1 (GAP).

 

4.4.1    Operator exposure/risk

According to the Dutch Plant Protection Products and Biocides Regulations the risk assessment is performed according to a tiered approach. There are four possible tiers:

Tier 1: Risk assessment using the EU-AOEL without the use of PPE

Tier 2: Risk assessment using the NL-AOEL without the use of PPE

Tier 3: Refinement of the risk assessment using new dermal absorption data

Tier 4: Prescription of PPE

 

Tier 1

 

Calculation of the EU-AOEL / Tolerable Limit Value (TLV)

For flonicamid no TLV has been set. The AOEL will be used for the risk assessment.

 

Since the formulation is applied 1-3 times during the period April – September, a semi-chronic exposure duration is applicable for the operator (including contract workers).

 

Since flonicamid is included in Annex I of 91/414/EEC, the semi-chronic EU-AOEL of 0.025 mg/kg bw/day (= 1.75 mg/day for a 70-kg operator), based on the developmental toxicity study with rabbits is used for the risk assessment (see List of Endpoints).

 

Exposure/risk

Exposure to flonicamid during mixing and loading and application of Teppeki is estimated with models. The exposure is estimated for the unprotected operator. In general, mixing and loading and application is performed by the same person. Therefore, for the total exposure, the respiratory and dermal exposure during mixing/loading and application have to be combined.

In the Table below the estimated internal exposure is compared with the systemic EU-AOEL.

 

Table T.1 Internal operator exposure to flonicamid and risk assessment for the use of Teppeki

 

Route

Estimated internal exposure a (mg /day)

Systemic

EU-AOEL

(mg/day)

Risk-index b

Mechanical downward spraying on flower and tuber bulbs (uncovered, 0.14 kg/ha)

Mixing/

Loadingc

Respiratory

0.01

1.75

< 0.01

Dermal

0.08

1.75

0.04

Applicationd

Respiratory

0.01

1.75

< 0.01

Dermal

0.27

1.75

0.16

 

Total

0.36

1.75

0.21

a    Internal exposure was calculated with:

·       biological availability via the dermal route: 7.46% (concentrate) and 13% (spray dilution) (see 4.2)

·       biological availability via the respiratory route: 100% (worst case)

b    The risk-index is calculated by dividing the internal exposure by the systemic AOEL.

c    External exposure is estimated with the NL-model.

d    External exposure is estimated with EUROPOEM.

 

Since the EU-AOEL is not exceeded without the use of PPE, a higher tier assessment is not required.

 

4.4.2    Bystander exposure/risk

The exposure is estimated for the unprotected bystander. In Table T.2 the estimated internal exposure is compared with the systemic EU-AOEL.

 

Table T.2 Internal bystander exposure to flonicamid and risk assessment during application of Teppeki

 

Route

Estimated internal exposure a (mg/day)

Systemic

EU-AOEL

(mg/day)

Risk-index b

Bystander exposure during application in flower and tuber bulbs

 

Respiratory

0.02

1.75

0.01

Dermal

0.01

1.75

< 0.01

 

Total

0.03

1.75

0.02

a    External exposure was estimated with EUROPOEM II. Internal exposure was calculated with:

·       biological availability via the dermal route: 7.46% (concentrate) and 13% (spray dilution) (see 4.2)

·       biological availability via the respiratory route: 100% (worst case)

b    The risk-index is calculated by dividing the internal exposure by the systemic AOEL.

 

4.4.3    Worker exposure/risk

Shortly after application it is possible to perform re-entry activities during which intensive contact with the treated crop will occur. Therefore, worker exposure is calculated. The exposure is estimated for the unprotected worker. In Table T.3 the estimated internal exposure is compared with the systemic EU-AOEL.

 

Table T.3 Internal worker exposure to flonicamid and risk assessment after application of Teppeki

 

Route

Estimated internal exposure a (mg/day)

Systemic

EU-AOEL

(mg/day)

Risk-index b

Re-entry activities in flower and tuber bulbs

 

Respiratory

-c

1.75

-c

Dermal

0.82

1.75

0.47

 

Total

0.82

1.75

0.47

a    External exposure was estimated with EUROPOEM II. Internal exposure was calculated with:

·       biological availability via the dermal route: 7.46% (concentrate) and 13% (spray dilution) (see 4.2)

·       biological availability via the respiratory route: 100% (worst case)

b    The risk-index is calculated by dividing the internal exposure by the systemic AOEL.

c    No model is available to calculate the respiratory internal exposure. However, the respiratory internal exposure

      can be considered negligible in view of the fact that the uses concern field activities (outdoors) and no spraying

      of the product occurs during re-entry activities.

 

Since the EU-AOEL is not exceeded without the use of PPE, a higher tier assessment is not required.

 

4.4.4    Re-entry

See 4.4.3 Worker exposure/risk.

 

Overall conclusion of the exposure/risk assessments of operator, bystander, and worker

The product complies with the Uniform Principles.

 

Operator exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the unprotected operator after dermal and respiratory exposure to flonicamid as a result of the application of Teppeki in flower and tuber bulbs.

 

Bystander exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the bystander due to exposure to flonicamid during application of Teppeki in flower and tuber bulbs.

 

Worker exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the unprotected worker after dermal and respiratory exposure during re-entry activities in flower and tuber bulbs due to exposure to flonicamid after application of Teppeki.

 

4.5       Appropriate mammalian toxicology and operator exposure endpoints relating to
the product and approved uses

See List of Endpoints.

 

4.6       Data requirements

Based on this evaluation, no additional data requirements are identified.

 

 

4.7       Combination toxicology

Teppeki contains only one active substance and it is not described that it should be used in combination with other formulations.

 

4.8       Mammalian toxicology classification and labelling

 

Proposal for the classification and labelling of the formulation concerning health

 

Substances, present in the formulation, which should be mentioned on the label by their chemical name (other very toxic, toxic, corrosive or harmful substances):

-

Symbol:

-

Indication of danger:

-

R phrases

-

-

S phrases

36/37d-NL

Wear suitable protective clothing and gloves, also when handling treated crops.

Special provisions:
DPD-phrases

DPD14

Safety data sheet available for professional user on request.

Plant protection products phrase:
DPD-phrase

DPD01

To avoid risk for man and the environment, comply with the instructions for use

Child-resistant fastening obligatory?

n.a.

Tactile warning of danger obligatory?

n.a.

 

Explanation:

Hazard symbol:

-

Risk phrases:

-

Safety phrases:

S36/37d-NL is assigned, based on the risk assessment for the operator and worker exposure.

Other:

The phrase DPD14 shall be assigned to preparations not classified for physico-chemical properties, health or environmental hazards, but containing at least one substance posing health or environmental hazards.

 

 

5.      Residues

 

Residues have not been evaluated since the extension only concerns non-consumable crops.

 

The application for extension of the authorisation of the plant protection product Teppeki does not concern crops used for food or feed. However, as the crops applied for may be grown in rotation with other crops, data on crop rotation should be taken into account. In the Annex I dossier it was sufficiently proven that no detectable residues are expected in rotational crops, as the average DT50 of flonicamid and soil metabolites in soil is £1.6 days.

 


 

6.      Environmental fate and behaviour

 

List of Endpoints Fate/behaviour 

For the risk assessment the List of Endpoints from the EFSA conclusion (2010) is used. This List of Endpoints is the same as the List of Endpoints used for the application for extension of Teppeki (12757N).

  

List of Endpoints Fate/behaviour 

 
Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1)

Mineralization after 100 days

47-56.6 % after 30 d (4 soils)

Non-extractable residues after 100 days

29.6-43.3 % after 30 d (4 soils)

Relevant metabolites - name and/or code, % of applied (range and maximum)

TFNA : 12.2-36.4 % after 1-3 d

TFNA-OH : 12.1-21.3 % after 2-7 d

TFNG-AM : 7.8-10.2 % after 0.3-2 d

TFNG : < 3.9 %

TFNA-AM : 7.6 % after 7 d

 

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation

 

No data provided, not required (April-July applications)

Soil photolysis

 

DT50 : 53 d (dark) and 22 d (continous artificial light) on dry soil

TFNG-AM : 13.8 % (dark), 29.5 % (light) after 15 d

Negligible role of photodegradation

           

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Method of calculation

1st order, R2 > 0.94

Laboratory studies (range or median, with n value,

with r2 value)

DT50lab (20°C, aerobic):

Flonicamid : 0.7-1.8 d (mean 1.1 d), 4 soils (pH 6.2-7.2)

TFNA : 0.29-0.46 d (mean 0.4 d), 3 soils (pH 5.7-6.8)

TFNA-OH : 1.0-2.6 d (mean 1.6 d), 3 soils (pH 5.7-6.8)

TFNG-AM : 0.2-1.0 (mean 0.5 d), 3 soils (pH 6.2-7.0)

TFNG : 0.1-1.1 d (mean 0.5 d), 3 soils (pH 5.7-6.8)

TFNA-AM : 1.0-2.6 d (mean 1.6 d), 3 soils (pH 6.2-7.0)

 

DT90lab (20°C, aerobic):

Flonicamid : 2.3-6.0 d (mean 3.5 d)

TFNA : 1.0-1.5 d (mean 1.3 d)

TFNA-OH : 3.4-8.7 d (mean 5.4 d)

TFNG-AM : 0.6-3.3 (mean 1.6 d)

TFNG : 0.4-3.5 d (mean 1.5 d)

TFNA-AM : 3.4-8.5 d (mean 5.2 d)

 

DT50lab (10°C, aerobic):

Flonicamid : 2.4 d

TFNA : 0.99 d

TFNA-OH : 4.5 d

TFNG-AM : 0.7 d

TFNG : 0.3 d

TFNA-AM : 4.8 d

 

DT50lab (20°C, anaerobic):

No data, not required (April-July applications)

 

 

degradation in the saturated zone:

 

Field studies (state location, range or median with

n value)

DT50f: : no data, not required

 

DT90f: : no data, not required

Soil accumulation and plateau concentration

No data, not required

 

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Kf /Koc

Kd

pH dependence (yes / no) (if yes type of

dependence)

Flonicamid      Kd : 0.03-0.17 L/kg

                        Kdoc : 2.5-8.7 L/kg (mean 5.9)

                        4 soils (pH 6.5-7.6)

TFNA              Kd : < 0.02 L/kg

                        Kdoc : < 3.0 L/kg (mean about 2.0)

                        4 soils (pH 5.7-7.2)

TFNA-OH        Kd : < 0.06 L/kg

                        Kdoc : < 4.4 L/kg (mean about 3.0)

                        4 soils (pH 5.7-7.2)

TFNG-AM        Kd : 0.04-0.32 L/kg

                        Kdoc : 5.5-13.2 L/kg (mean 9.2)

                        4 soils (pH 5.6-7.2)

TFNG              Kd : < 0.03 L/kg

                        Kdoc : < 4.0 L/kg (mean about 1.6)

                        4 soils (pH 5.7-7.2)

TFNA-AM        Kd : 0.03-0.20 L/kg

                        Kdoc : 2.8-12.1 L/kg (mean 6.2)

                        9 soils (pH 5.6-8.1)

 

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching

No data provided, not required

Aged residues leaching

No data provided, not required

Lysimeter/ field leaching studies

No data provided

 

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolysis of active substance and relevant metabolites (DT50) (state pH and temperature)

pH 4 : flonicamid and TFNA are stable

 

pH 7: flonicamid and TFNA are stable

 

pH 9 : DT50 204 d (25° C), 17.1 d (40° C), 9.0 d (50° C)

TFNG-AM : 65.1 % after 20 d at 50° C

TFNG : 85.7 % after 120 d at 50° C

TFNA : stable

Photolytic degradation of active substance and

relevant metabolites

pH 7 , 23° C : stable (dark), DT50 267 d (continous artifical light).

Negligible role of photodegradation (Φ = 0.000319)

Readily biodegradable (yes/no)

No

Degradation in    - DT50 water

water/sediment    - DT90 water

                            - DT50 whole system

                            - DT90 whole system

30.3-37.3 d (1st order)

100.5-123.8 d

 

35.7-43.6 d (1st order)

118.7-144.8 d

Mineralization

15.6-59.1 % (136-145 d)

Non-extractable residues

38.4-75.4 % (136-145 d)

 

Distribution in water / sediment systems (active

substance)

Max. 17.8-43.7 % after 3 d due to high sediment:water ratio (1:4) and to high OC content up to 10.2 % (DT50 41-69 d)

Distribution in water / sediment systems

(metabolites)

TFNA : max. 9.6 % in water after 30 d (apparent DT50 60 d) and 9.2 % in sediment after 42 d (apparent DT50 59 d).

TFNA-OH : max. 12.5 % in water after 42 d (apparent DT50 49 d) and < 2.2 % in sediment.

TFNG : < 3.7 % in water and < 2.7 % in sediment.

TFNA-AM : < 0.9 % in water and < 1.1 % in sediment.

 

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air

 

Quantum yield of direct phototransformation

 

Photochemical oxidative degradation in air

Latitude: ................  Season: .................   DT50 ..13.7 d (12 h day) for KOH 0.779 x 10-12 cm3 molecule-1 sec-1 and [OH] 1.5 x 106 radicals per cm3

Volatilization

from plant surfaces: no data provided

 

from soil: no data provided

 

Definition of the Residue (Annex IIA, point 7.3)

Relevant to the environment

 

 

Soil : flonicamid, TFNA, TFNA-OH, TFNG-AM, TFNG, TFNA-AM

            residue : flonicamid

Groundwater : flonicamid

Surface water : flonicamid, TFNA, TFNA-OH

            residue : flonicamid

Sediment : flonicamid

Air : flonicamid

 

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)

No data

Surface water (indicate location and type of study)

No data

Ground water (indicate location and type of study)

No data

Air (indicate location and type of study) 

No data

 

Classification and proposed labelling (Annex IIA, point 10)

with regard to fate and behaviour data

R53

 

Appendix A: Metabolite names, codes and other relevant information of the pesticide Teppeki with active substance flonicamid

The compounds shown below were found in one or more studies involving the metabolism and/or environmental fate of active substance flonicamid. The parent compound structure of flonicamid is shown first in this list and followed by degradate or related compounds.

 

 

Compound name

IUPAC name

Structural formula

Molecular Weight

[g/mol]

 

Observed in study (% of occurrence/ formation)

flonicamid

 

C9H6F3N3O

229.16

 

TFNA

4-trifluoromethylnicotinic acid

C7H4F3NO2

191.11

Max 36.4% (soil); max 9.6% (water)

TFNG-AM

N-(4-trifluoromethyl-nicotinoyl)

glycinamide

C9H8F3N3O2

242.11

Max 10.2% (soil);

TNFA-OH

6-hydroxy-4-trifluoro-methylnicotinic acid

C7H4F3NO3

207.11

TFNA-OH 21.3% (soil); max 12.5% (water)

 

6.1       Fate and behaviour in soil

6.1.1    Persistence in soil

Article 2.8 of the Plant Protection Products and Biocides Regulations (RGB) describes the authorization criterion persistence. If for the evaluation of the product a higher tier risk assessment is necessary, a standard is to be set according to the MPC-INS[1] method. Currently this method equals the method described in the Technical Guidance Document (TGD). Additional guidance is presented in RIVM[2]-report 601782001/2007[3].

 

Preceding the harmonisation of the persistence assessment in The Netherlands with regulation 1107/EG, the EU approach for persistence assessment is followed.

 

For the current application this means the following:

 

Active substance flonicamid

The following laboratory DT50 values are available for the active substance flonicamid: 1.0.0.7,0.7,1.8  days (mean: 1.1 days). The mean DT50-value of the active substance can thus be established to be <90 days. Furthermore it can be excluded that after 100 days there will be more than 70% of the initial dose present as bound (non-extractable) residues together with the formation of less than 5% of the initial dose as CO2.

In this way, the standards for persistence as laid down in the RGB are met.

 

For the metabolite TFNA the following DT50-values are available: 0.46, 0.29 and 0.45 days (mean 0.4 days).

For the metabolite TFNA-OH  the following DT50-values are available: 1.3, 1.0  and 2.6 days (mean 1.6 days). For the metabolite TFNG-AM the following DT50-values are available: 0.2, 0.3 and 1.0 days (mean 0.5 days).

Based on the above, the standards of persistence as laid down in the RGB are met.

PECsoil

The concentration of the active substance flonicamid and metabolites TFNG-AM, TFNA and TFNA-OH in soil is needed to assess the risk for soil organisms (earthworms, micro-organisms). The PECsoil is calculated for the upper 5 cm of soil using a soil bulk density of 1500 kg/m3.

 

As the logPow of the substance is < 3 (-0.24), a PEC21days is not needed for the assessment of secondary poisoning of birds and mammals through the consumption of earthworms.

The following input data are used for the calculation:

 

PEC soil:

 

Active substance flonicamid:

Maximum lab DT50 for degradation in soil: 1.8 days

Molecular mass: 229.2 g/mol

 

Metabolite TFNA:

Maximum DT50 for degradation in soil (20°C): 0.46 days

Molecular mass: 190.2 g/mol

Correction factor: 0.364 (maximum observed percentage) x 0.83 (relative molar ratio = M metabolite/M parent) = 0.302

 

Metabolite TFNA-OH:

Maximum DT50 for degradation in soil (20°C): 2.6 days

Molecular mass: 206.3 g/mol

Correction factor: 0.213 (maximum observed percentage)  x 0.90 (relative molar ratio = M metabolite/M parent) = 0.192

 

Metabolite TFNG-AM:

Maximum DT50 for degradation in soil (20°C):  1.0 days

Molecular mass: 247.5 g/mol

Correction factor: 0.102 (maximum observed percentage) x 1.08 (relative molar ratio = M metabolite/M parent) = 0.110

 

See Table M.1 for other input values and results.

 

Table M.1 PECsoil calculations for active substance flonicamid and metabolites TFNA, TFNA-OH and TFNG-AM  (5 cm and 20 cm)

Use

Substance

Rate

[kg a.s./ha]

Freq./

Interval

[days]

Fraction on soil *

PIECsoil

 [mg a.s./kg]

(5 cm)

 

Flower and tuber bulbs

Flonicamid

TFNA

TFNA-OH

TFNG-AM

0.07

0.021

0.013

0.0077

3 / 21

0.9

0.084

0.025

0.016

0.009

* fraction on soil is determined as 1 – interception value; interception values derived from Table 1.6 in “generic guidance for FOCUS groundwater scenarios”. For the use in ‘Flower bulbs and tuber bulbs’ the interception is interpolated from the FOCUS crop ‘Onions’, which is 0.10 interception for BBCH code 12.

 

These exposure concentrations are examined against ecotoxicological threshold values in section 7.5.

 

6.1.2        Leaching to shallow groundwater

Article 2.9 of the Plant Protection Products and Biocides Regulations (RGB) describes the authorisation criterion leaching to groundwater.

The leaching potential of the active substance flonicamid and metabolites TFNA, TFNA-OH and TFNG-AM is calculated in the first tier using Pearl 4.4.4 and the FOCUS Kremsmünster scenario. Input variables are the actual worst-case application rate [0.07 kg/ha], the crop [KREMonions scenario is used] and an interception value appropriate to the crop stage of 0,1. First date of yearly application is May 25th. For metabolites all available data concerning substance properties are regarded. Metabolites TFNA, TFNA-OH and TFNG-AM are included in the calculations. No other metabolites occurred above > 10 % of AR, > 5 % of AR at two consecutive sample points or had an increasing tendency.

The following input data are used for the calculation:

 

PEARL:

 

Active substance flonicamid:

Geometric mean laboratory DT50 for degradation in soil (20°C): 1.0 days (n=4)

Arithmetic mean Kom (pH-independent): 5.9 L/kg

1/n: 0.9 (default)

 

Saturated vapour pressure: 9.43 x 10-7 Pa (20°C)

Solubility in water: 5.2mg/L (20°C)

Molecular mass: 229.2 g/mol

 

Plant uptake factor: 0.5

Q10: 2.2

 

Metabolite TFNA:

Geometric mean laboratory DT50 for degradation in soil (20°C): 0.4 days

Arithmetic mean Kom (pH-independent): 2.0 L/kg

1/n: 1.0 (default for metabolites)

 

Saturated vapour pressure: 9.43 x 10-7 Pa (20°C; parent value)

Solubility in water: 5.2mg/L (20°C; parent value)

Molecular mass: 190.2 g/mol

Correction factor: 0.364 (formation fraction metabolite) x 0.83 (relative molar ratio = M metabolite/M parent) = 0.302

 

Plant uptake factor: 0.0

Q10: 2.2

 

Metabolite TFNA-OH:

Geometric mean laboratory DT50 for degradation in soil (20°C):  1.5 days

Arithmetic mean Kom (pH-independent): 3.0 L/kg

1/n: 1.0 (default for metabolites)

 

Saturated vapour pressure: 9.43 x 10-7 Pa (20°C; parent value)

Solubility in water: 5.2mg/L (20°C; parent value)

Molecular mass: 206.3 g/mol

Correction factor: 0.213 (formation fraction metabolite)  x 0.90 (relative molar ratio = M metabolite/M parent) = 0.192

 

Plant uptake factor: 0.0

Q10: 2.2

 

Metabolite TFNG-AM:

Geometric mean laboratory DT50 for degradation in soil (20°C):  0.5 days

Arithmetic mean Kom (pH-independent): 6.2 L/kg

1/n: 1.0 (default for metabolites)

 

Saturated vapour pressure: 9.43 x 10-7 Pa (20°C; parent value)

Solubility in water: 5.2 mg/L (20°C; parent value)

Molecular mass: 247.5 g/mol

Correction factor: 0.102 (formation fraction metabolite) x1.08 (relative molar ratio = M metabolite/M parent) = 0.110

 

Plant uptake factor: 0.0

Q10: 2.2

 

Other parameters: standard settings of PEARL 4.4.4

 

The following concentrations are predicted for the active substance flonicamid and metabolites TFNA, TFNA-OH and TFNG-AM following the realistic worst case GAP, see Table M.2.

 

Table M.2 Leaching of active substance flonicamid and metabolites TFNA, TFNA-OH and TFNG-AM as predicted by PEARL 4.4.4

Use

Substance

Rate substance [kg/ha]

Frequency/ Interval [days]

Fraction

Intercepted *

PEC

groundwater [mg/L]

 

 

 

 

 

spring

 

Flower and tuber bulbs

Flonicamid

TFNA

TFNA-OH

TFNG-AM

0.07

0.021

0.013

0.0077

3/21

0.9

< 0.001

< 0.001

< 0.001

< 0.001

* interception values derived from Table 1.6 in “generic guidance for FOCUS groundwater scenarios”. For the use in ‘Flower bulbs and tuber bulbs’ the interception is interpolated from the FOCUS crop ‘Onions’, which is 0.10 interception for BBCH code 12.

 

Results of Pearl 4.4.4 using the Kremsmünster scenario are examined against the standard of 0.01 µg/L. This is the standard of 0.1 µg/L with an additional safety factor of 10 for vulnerable groundwater protection areas (NL-specific situation).

 

From Table M.2 it reads that the expected leaching based on the PEARL-model calculations for the active substance flonicamid and metabolites TFNA, TFNA-OH and TFNG-AM is smaller than 0.01 µg/L for all proposed applications. Hence, the applications meet the standards for leaching as laid down in the RGB.

 

Conclusions

The active substance flonicamid and metabolites TFNA, TFNA-OH and TFNG-AM comply with the requirements laid down in the RGB concerning persistence in soil.

 

The proposed application of the product complies with the requirements laid down in the RGB concerning leaching in soil.

 

6.2       Fate and behaviour in water

6.2.1    Rate and route of degradation in surface water

Article 2.10c of the Plant Protection Products and Biocides Regulations (RGB) prescribes the use of Dutch specific drift percentages.

 

The exposure concentrations of the active substance flonicamid and metabolites TFNA and TFNA-OH in surface water have been estimated for the various proposed uses using calculations of surface water concentrations (in a ditch of 30 cm depth), which originate from spray drift during application of the active substance. The spray drift percen­tage depends on the use.

 

Concentrations in surface water are calculated using the model TOXSWA. The following input data are used for the calculation:

 

TOXSWA:

Active substance flonicamid:

Mean DT50 for degradation in water at 20°C: 39.7 days

DT50 for degradation in sediment at 20°C: 1000 days (default).

 

Arithmetic mean  Kom for suspended organic matter: 19 L/kg

Arithmetic mean Kom for sediment: 19 L/kg

1/n: 0.9 (default)

 

Molecular mass: 190.2 g/mol

Saturated vapour pressure: 9.43 x 10-7 Pa (20°C)

Solubility in water: 5.2mg/L (20°C)

Molecular mass: 229.2 g/mol

 

Q10: 2.2

 

Metabolite TFNA:

Geometric mean DT50 for degradation in water at 20°C:  60 days

DT50 for degradation in sediment at 20°C: 1000 days (default).

 

Arithmetic mean Kom for suspended organic matter: 2.0 L/kg

Arithmetic mean Kom for sediment: 2.0 L/kg

1/n: 1.0 (default for metabolites)

 

Saturated vapour pressure: 9.43 x 10-7 Pa (20°C;parent value)

Solubility in water: 5.2mg/L (20°C;parent value)

Molecular mass: 190.2 g/mol

 

Correction factor: 0.096 (formation fraction metabolite or max. % observed) * 0.83 (relative molar ratio = M metabolite/ M parent) =0.080

Q10: 2.2

 

Metabolite TFNA-OH:

Geometric mean DT50 for degradation in water at 20°C:  49 days

DT50 for degradation in sediment at 20°C: 1000 days (default).

 

Arithmetic mean Kom for suspended organic matter: 3.0 L/kg

Arithmetic mean Kom for sediment: 3.0 L/kg

1/n: 1.0 (default for metabolites)

 

Saturated vapour pressure: 9.43 x 10-7 Pa (20°C;parent value)

Solubility in water: 5.2mg/L (20°C;parent value)

Molecular mass: 206.3 g/mol

 

Correction factor: 0.102 (formation fraction metabolite or max. % observed) * 0.90 (relative molar ratio = M metabolite/ M parent) = 0.092

Q10: 2.2

 

Other parameters: standard settings TOXSWA

 

When no separate degradation half-lives (DegT50 values) are available for the water and sediment compartment (accepted level P-II values), the system degradation half-life (DegT50-system, level P-I) is used as input for the degrading compartment and a default value of 1000 days is to be used for the compartment in which no degradation is assumed. This is in line with the recommendations in the FOCUS Guidance Document on Degradation Kinetics.

 

For metabolites, the level M-I values are used (system DegT50 value) only, since level M-II criteria have not been fully developed under FOCUS Degradation Kinetics.

 

In Table M.3, the drift percentages and calculated surface water concentrations for the active substance flonicamid and its metabolites TFNA and TFNA-OH for each intended use are presented.

 

Table M.3. Overview of surface water concentrations for active substance flonicamid and its metabolites TFNA and TFNA-OH in the edge-of-field ditch following spring application

Use

Sub-stance

Rate a.s.

[kg/ha]

Freq./

Interval [d]

Drift

[%]

PIEC

[mg/L] *

PEC21

[mg/L] *

PEC28

[mg/L] *

 

 

 

 

 

spring

spring

spring

Flower and tuber bulbs

Flonicamid

TFNA

TFNA-OH

 

0.07

0.0056

0.0064

 

3/21

1%

0.600

0.050

0.056

0.413

0.036

0.040

0.444

0.037

0.042

* calculated according to TOXSWA

 

The exposure concentrations in surface water are compared to the ecotoxicological threshold values in section 7.2.

 

Monitoring data

Article 2.10b of the Plant Protection Products and Biocides Regulations (RGB) describes the use of the 90th percentile.

 

The Pesticide Atlas on internet (www.pesticidesatlas.nl, www.bestrijdingsmiddelenatlas.nl) is used to evaluate measured concentrations of pesticides in Dutch surface water, and to assess whether the observed concentrations exceed threshold values. Dutch water boards have a well-established programme for monitoring pesticide contamination of surface waters. In the Pesticide Atlas, these monitoring data are processed into a graphic format accessible on-line and aiming to provide an insight into measured pesticide contamination of Dutch surface waters against environmental standards. Recently, the new version 2.0 was released. This new version of the Pesticide Atlas does not contain the land use correlation analysis needed to draw relevant conclusions for the authorisation procedure. Instead a link to the land use analysis performed in version 1.0 is made, in which the analysis is made on the basis of data aggregation based on grid cells of either 5 x 5 km or 1 x 1 km.

 

Data from the Pesticide Atlas are used to evaluate potential exceeding of the authorisation threshold and the MPC (ad-hoc or according to INS) threshold. For examination against the drinking water criterion, another database (VEWIN) is used, since the drinking water criterion is only examined at drinking water abstraction points. For the assessment of the proposed applications regarding the drinking water criterion, see next section.

Active substance flonicamid

The active substance flonicamid  was observed in the surface water (most recent data from 2010). In Table M.4, the number of observations in the surface water are presented.

In the Pesticide Atlas, surface water concentrations are compared to the authorisation threshold value of and to the indicative Maximum Permissible Concentration (MPC) of 120 µg/L as presented in the Pesticide Atlas (data source for the MPC: Zoeksysteem normen voor het waterbeheer, http://www.helpdeskwater.nl/normen_zoeksysteem/normen.php). No authorisation threshold is included for flonicamid in the Pesticide Atlas. However, based on the ecotoxicology data, the authorisation threshold is 310 µg/L [0.1 x NOECdaphnia]. As this is more than a factor 2.5 higher than the MPC and there are no exceedings of the MPC, there are also no exceedings of the authorisation threshold.

 

Currently, this MPC value is not harmonised, which means that not all available ecotoxicological data for this substance are included in the threshold value. In the near future and in the framework of the Water Framework Directive, new quality criteria will be developed which will include both MPC data as well as authorisation data. The currently available MPC value is reported here for information purposes. Pending this policy development, however, no consequences can be drawn for the proposed applications.

 

Table M.4. Monitoring data in Dutch surface water (from www.pesticidesatlas.nl, version 2.0)

Total no of locations

(2010)

n > authorisation threshold

n > indicative/ad hoc MPC threshold

n > MPC-INS threshold *

[282]**

-

0

n.a

* n.a.: no MPC-INS available. < : exceeding expected to be lower than with indicative/ad hoc MPC value; > : exceeding expected to be higher than with indicative/ad hoc MPC value

** the number of observations at each location varies between 1 and 30, total number of measurements is 1662 in 2010.

As there are no exceedings of thresholds, the monitoring data have no consequences for the proposed uses of the product.

 

Drinking water criterion

Article 2.10b of the Plant Protection Products and Biocides Regulations (RGB) describes the use of the 90th percentile.

 

It follows from the decision of the Court of Appeal on Trade and Industry of 19 August 2005 (Awb 04/37 (General Administrative Law Act)) that when considering an application, the Ctgb should, on the basis of the scientific and technical knowledge and taking into account the data submitted with the application, also judge the application according to the drinking water criterion ‘surface water intended for drinking water production’. The assessment methodology followed is developed by the WG implementation drinking water criterion and outlined in Alterra report 1635[4].

 

Substances are categorized as new substances on the Dutch market (less than 3 years authorisation) or existing substances on the Dutch market (authorised for more than 3 years).

-          For new substances, a pre-registration calculation is performed.

-          For existing substances, the assessment is based on monitoring data of VEWIN (drinking water board).

o        If for an existing substance based on monitoring data no problems are expected by VEWIN, Ctgb follows this VEWIN assessment.

o        If for an existing substance based on monitoring data a potential problem is identified by VEWIN, Ctgb assesses whether the 90th percentile of the monitoring data meet the drinking water criterion at each individual drinking water abstraction point.

 

Active substance flonicamid has been on the Dutch market for > 3 years (authorised since 16-12-2005). This period is sufficiently large to consider the market share to be established. From the general scientific knowledge collected by the Ctgb about the product and its active substance, the Ctgb concludes that there are in this case no concrete indications for concern about the consequences of this product for surface water from which drinking water is produced, when used in compliance with the directions for use. The Ctgb does under this approach expect no exceeding of the drinking water criterion. The standards for surface water destined for the production of drinking water as laid down in the RGB are met.

 

The standards for surface water destined for the production of drinking water as laid down in the RGB are met.

 

6.3       Fate and behaviour in air

 

Route and rate of degradation in air

Flonicamid:

The vapour pressure is 9.43 x 10-7 Pa at 20°C. The Henry constant is 4.2 x 10-6 at 20°C.

 

Since at present there is no framework to assess fate and behaviour in air of plant protection products, for the time being this issue is not taken into consideration.


 

6.4       Appropriate fate and behaviour endpoints relating to the product and approved uses

See List of Endpoints.

 

6.5       Data requirements

None.

 

The following restriction sentences were proposed by the applicant:

-

Based on the current assessment, the following has to be stated in the GAP/legal instructions for use:

-

 

6.6       Overall conclusions fate and behaviour

It can be concluded that:

  1. the active substance flonicamid meets the standards for per­sis­tence in soil as laid down in the RGB.
  2. all proposed applications of the active substance flonicamid meet the standards for leaching to the shallow groundwater as laid down in the RGB.
  3. all proposed applications of metabolite TFNA, TFNA-OH, TFNG-AM meet the standards for leaching to shallow groundwater as laid down in the RGB.
  4. all proposed applications of the active substance flonicamid meet the standards for surface water destined for the production of drinking water as laid down in the RGB.

 

 

7.      Ecotoxicology

 

Risk assessment is done in accordance with Chapter 2 of the RGB published in the Government Gazette (Staatscourant) 188 of 28 September 2007, including the updates of 20 October 2009 (which came into effect on 1 January 2010) and 18 April 2011 (which came into effect on 23 April 2011).

 

For the current risk assessment of Teppeki, the following data was used: original notification in the Netherlands (20040125 TG, notification number 12757N), and the final List of Endpoints dd. 12/04/2010.

 

According to EFSA’s review report,

Member States must pay particular attention to … the risk to bees”.

 

 

List of Endpoints Ecotoxicology

 

Data from the final LoEP of flonicamid dd. 12-04-2010

 

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Toxicity to mammals

Short-term LD50 = 884 mg a.s./kg bw

Long-term NOEL (teratogenicity) = 25 mg a.s./kg bw/d

 

Acute toxicity to birds

LD50 (quail. boths sexes) > 2000 mg a.s./kg bw

LD50 (duck. male) = 2621 mg a.s./kg bw

LD50 (duck. female) = 1591 mg a.s./kg bw

 

Dietary toxicity to birds

LD50 (quail) > 411 mg a.s./kg bw/d

LD50 (duck) > 301.8 mg a.s./kg bw/d

 

Reproductive toxicity to birds

NOEL (quail) = 90 mg a.s./kg bw/d

NOEL (duck) = 59 mg a.s./kg bw/d

 

Toxicity data for aquatic species  (Annex IIA. point 8.2.  Annex IIIA. point 10.2)

Group

Test substance

Time-scale

Endpoint

Toxicity

(mg/L)

Laboratory tests

O. mykiss

a.s.

acute

LC50-96 h

> 100 mg a.s./L

O. mykiss

IKI-220 50%WG

acute

LC50-96 h

> 51 mg a.s./L

L. macrochirus

a.s.

acute

LC50-96 h

> 100 mg a.s./L

P. promelas

a.s.

chronic

NOEC-33 d

10 mg a.s./L

D. magna

a.s.

acute

EC50-48 h

> 100 mg a.s./L

D. magna

IKI-220 50%WG

acute

EC50-48 h

> 51 mg a.s./L

D. magna

a.s.

chronic

NOEC-21 d

3.1 mg a.s./L

Ps. subcapitata

a.s.

 

EbC50-72 h

ErC50-72 h

> 100 mg a.s./L

> 100 mg a.s./L

Ps. subcapitata

IKI-220 50%WG

 

EbC50-72 h

ErC50-72 h

43 mg a.s./L

> 51 mg a.s./L

L. gibba

a.s.

 

EC50 biomass and growth-7 d

119 mg a.s./L

C. riparius

a.s.

acute

LC50-48 h

> 200 mg a.s./L

C. riparius

a.s.

chronic

NOEC-28 d

25 mg a.s./L

 

O. mykiss

TFNA

acute

LC50-96 h

> 100 mg a.s./L

D. magna

 

acute

EC50-48 h

> 100 mg a.s./L

Ps. subcapitata

 

 

EbC50-72 h

ErC50-72 h

> 100 mg a.s./L

> 100 mg a.s./L

O. mykiss

TFNA-OH

acute

LC50-96 h

> 100 mg a.s./L

D. magna

 

acute

EC50-48 h

> 100 mg a.s./L

Ps. subcapitata

 

 

EbC50-72 h

ErC50-72 h

29 mg a.s./L

> 100 mg a.s./L

O. mykiss

TFNA-AM

acute

LC50-96 h

> 100 mg a.s./L

D. magna

 

acute

EC50-48 h

> 100 mg a.s./L

Ps. subcapitata

 

 

EbC50-72 h

ErC50-72 h

> 100 mg a.s./L

> 100 mg a.s./L

O. mykiss

TFNG-AM

acute

LC50-96 h

> 100 mg a.s./L

D. magna

 

acute

EC50-48 h

> 100 mg a.s./L

Ps. subcapitata

 

 

EbC50-72 h

ErC50-72 h

> 100 mg a.s./L

> 100 mg a.s./L

 

                                                          

Bioconcentration

Bioconcentration factor (BCF)

logPow = 0.3 (i.e.. < 3)

Annex VI Trigger:for the bioconcentration factor

 

Clearance time           (CT50)

                      (CT90)

 

Level of residues (%) in organisms after the 14 day depuration phase

 

 

 

 

Effects on honeybees (Annex IIA. point 8.3.1. Annex IIIA. point 10.4)

Acute oral toxicity

> 104.3 mg IKI-220 50% WG (TEPPEKI) / bee

i.e.. > 53.3 mg a.s./bee

Acute contact toxicity

> 100.0 mg IKI-220 50% WG (TEPPEKI) / bee

i.e.. > 51.1 mg a.s./bee

 

Effects on other arthropod species (Annex IIA. point 8.3.2. Annex IIIA. point 10.5)

Laboratory tests:

Species

Stage

Test

Substance1

Dose

(g a.s./ha)

Endpoint

Adverse effect2

Annex VI

Trigger

Laboratory tests

A. rhopalosiphi

(standard test)

adults

IKI-220 50% WG

80
210

mortality

22.2%
55.5%

30%

T. pyri

(standard test)

protonymphs

 

80
210

mortality

100%
100%

30%

C. 7-punctata

(standard test)

larvae

 

80
210

mortality

30%
30%

30%

 

Tier 2 studies:

Species

Stage

Test

Substance

Dose

(g a.s./ha)

Endpoint

Adverse effect2

Annex VI

Trigger

Extended laboratory tests

A. rhopalosiphi

(extd test)

adults

 

85

mortality
reproduction

4.4%
9.5% *

30%

T. pyri

(extd test)

protonymphs

 

85

mortality
reproduction

23.3%
5.5% *

30%

C. 7-punctata

(extd test)

larvae

 

85

mortality
reproduction

6.1%
14.3%

30%

C. carnea

(extd test)

larvae

 

85

mortality
reproduction

18.8%
- 18.5% *

30%

P. cupreus

(standard test)

adults

 

45

mortality
food consumption

3.3%
- 0.8% *

30%

E. balteatus

(extd test)

larvae

 

85

mortality
reproduction

2.3%
30.2%

30%

O. laevigatus

(lab test)

2nd stage nymph

 

161 (dry residues)

mortality
reproduction

22%
11%

30%

Field or semi-field tests: no data.

 

* reduction.

1 Test substance IKI-220 50% WG = TEPPEKI = 50% flonicamid

 

2 Adverse effect means:

x % effect on mortality = x % increase of mortality compared to control

y % effect on a sublethal parameter = y % decrease of sublethal paramether compared to control

(sublethal parameters are e.g. reproduction, parasitism, food consumption)

 

When effects are favourable for the test organisms, a + sign is used for the sublethal effect percentages (i.e. increase of e.g. reproduction) and a – sign for mortality effect percentages (i.e. decrease of mortality).

Effects on earthworms (Annex IIA. point 8.4. Annex IIIA. point 10.6)

Acute toxicity

flonicamid > 1000 mg a.s./kg soil

TFNA > 100 mg a.s./kg soil

TFNA-OH > 100 mg a.s./kg soil

TFNG-AM > 100 mg a.s./kg soil

TFNA-AM > 100 mg a.s./kg soil

Reproductive toxicity

not required

 

Effects on soil micro-organisms (Annex IIA. point 8.5. Annex IIIA. point 10.7)

Nitrogen transformation

0.105 kg a.s./ha: no effect > 25%

Carbon mineralization

0.105 kg a.s./ha: no effect > 25%

 

 

Effects on terrestrial plants (Annex IIA 8.6; Annex IIIA 10.8)

Foliar treatment

Eleven species. No effect in a screening test

Soil treatment

Seventeen species. No effect in a screening test

It can be concluded that IKI 220-50WG at the practical use rate of 100 g a.i/ha has no effect to 11 species of adjacent crops. At 300 g a.i./ha, IKI 220-50WG has no effect to 17 species of succeeding crops.

 

Effects on biological methods for sewage treatment (taken from monograph)

EC50 > 1000 mg/L = > 500 mg a.s./L

NOEC = 1000 mg/L.

 

Classification and proposed labelling (Annex IIA. point 10)

with regard to ecotoxicological data

 

not classified

 

Other studies

           

Two field studies in honey bees were submitted and summarized/evaluated by Wageningen UR (reports dated November 2012, revised February 2013).

 

Study 1

The first study was performed by RCC (study number B47520) and tested the impact of one application of 80 g a.s./ha Teppeki (IKI-220 50% WG), sprayed after bee foraging activity on flowering Phacelia tanacetefolia, on the acute mortality, colony strength, brood development and foraging activity of honey bees. The exposure duration was 7 days.

 

The study was conducted on two test plots. The test plot measured  of 2808 m2 (EPPO 1/170 (3) guideline recommend 1500 m2, EPPO 1/170 (4) update 2010, recommends 2500 m2), the control plot measured 1984 m2 . The test  and control sites were located approximately 3 km from each other.

The parameters flight density to assess exposure and adult bee mortality were recorded daily at 3 days before and 7 days after the application of Teppeki. The colony strength was recorded 2 days before application and 25 days after application. Mortality of the brood was recorded up to 22 days after application and the development of the brood, starting with eggs, young larvae and old larvae started 1 day before application and was completed 22 days after application. EPPO 1/170 (3) recommends brood check up to 28 days.

 

Exposure to the crop by means of checking pollen income with a pollen was not carried out.

The parameters provide sufficient information to evaluate the short term effect Teppeki on a honeybee colony.

 

The test design meets the EPPO guideline which provides a reasonable foraging conditions and exposure for the honeybee colonies, The smaller control plot does not meet the 2010 guideline but does meet the EPPO 2000 guideline,  is large enough to compare colony development as result of foraging on Phacelia tanacetifolia.

 

In the study report, the number of foragers per m2 on the test site is adjusted with a factor 1.42  to account for the difference between control (1984 m2) and test site (2808 m2) before statistical analysis.  However, this is incorrect as the total number of bees per field is not the parameter but the number of foraging bees per m2. The same goes for in field mortality in which number of dead bees per 5 *1 m2 (observation time per recording :15 seconds) is the parameter and not the assessed in-field mortality of the entire field. Therefore, the results were recalculated by the reviewer, as follows:

 

Mean flight density

pre-treatment (day -3 to -1): test mean (sd): 7.5 (5.7), control mean 5.7 (10.0) F = 43.16, P < 0.01 df res/tot = 13/14

post treatment day 0 to day 7: test mean (sd): 5.1 (4.9), control mean 8.3 (6.5) F = 34.52, P < 0.01 df res/tot = 68/69

 

mean in field mortality

pre-treatment (day -3 to -1): test mean (sd): 0.11 (0.33), control mean 1.8 (3.1) F = 21.76, P = 0.002 df res/tot = 7/8

post treatment day 0 to day 7: test mean (sd): 0.14 (0.35), control mean 2.4 (2.69) F = 0.52, P = 0.47 df res/tot = 40/41

 

mean flight density on day 1

test mean (sd): 1.1 (2.05), control mean 5.6 (4.2) F = 14.96, P < 0.01 df res/tot = 20/21

 

mean flight density on day 2

test mean (sd): 9.7 (7.5), control mean 15.9 (4.2) F = 6.18, P = 0.025 df res/tot = 15/16

 

The recording times were correct to assess foraging activity. The number of foraging bees, recorded at subsequent intervals 1 and 2 days after application and once a day till 7 days after application, on the sprayed crop was sufficient to provide exposure although the mean flight density was significant lower on the test plot compared to the control plot on day 1 and 2. The number of four colonies per test site meets the requirement of the EPPO guideline 170 (3). The number of bees per colony, required according to the guideline, at least 10 000 bees is not specifically recorded. A fully occupied frame (Swiss format hives (36 x 30 cm  is occupied by approximately 2 x 1300 = 2600 bees. The number of occupied bee ways (gap between 2 frames) was recorded. Each completely occupied bee ways contains about 2600 bees. The number occupied bee ways exceeded 4 meaning that the colonies met the requirement of colony strength.  The brood was recorded in detail by assessing the percentage coverage by brood. Simultaneously the percentage coverage of the frames by pollen, nectar, honey and vacant cells were assessed. The number of frames containing brood met the requirements.  

Mortality was recorded in the traps placed in front of the hives and on three, 5 m2 linen sheets in the field, both test site and control site. In the traps the number of dead bees the total of 3 days (-2, -1, 0)  before application was 102 and 47 for the control- and test site respectively. After application these numbers, collected from day 1 to day 22, were 250 and 219. Before application no dead larvae and pupae were found in the traps. After application the mean numbers of dead pupae collected from day 1 till day 22 was 4.4 and 2.25 in the control- and test colonies. At the control site 2 larvae were found. Overall there was no statistically significant difference in in-hive adult bee mortality in the colonies placed at the control- and test sites. The success of brood development in the control was 92.6% in the control colonies (n = 4) and 89.0% in the test colonies (n = 4). This is within the range of normal development.

The statistics applied are applicable for the evaluation of the brood development parameters. The statistics applied for flight density and in field mortality are applicable but adjusting the data to account for the test and control site area is not correct. Recalculation of the original data shows significant differences between in field flight density before and after Teppeki application both during the entire study period as during day 1 and 2 following the Teppeki application. In field mortality was not significant different after Teppeki application. 

 

In the study there was no positive control (known toxic). Although a positive control provides information about foraging activity and exposure it is not required for field tests  (EPPO PP 170 (3). No specific checks were done to show that the bees foraged on Phacelia tanacetifolia by counting the incoming colour of the pollen pellets. However the recording of the foraging activity in the fields, the placement of the colonies and the surface of the control- and test plot assure foraging of the bees to the plots.

 

Based on the data reported and statistical methods applied to evaluate the results, the conclusion of the report that there are no adverse effects on honeybee colonies under field conditions is not justifiable for flight density. There are significant differences between the test and control site. The argument mentioned in the discussion that there were other colonies around does not justify this differences as there is no recording of these colonies nor of competing crops near the sites. Based on the data and GLM analysis, flight density after Teppeki application is significantly reduced.

 

Based on the data reported and statistical methods applied to evaluate the results, the conclusion of the report that there are no adverse effects on honeybee colonies under field conditions is justifiable for brood development, in hive mortality and field mortality.

 

Study 2

The second was performed by IBacon (project 36061040) and tested the impact of one application of 80 g a.s./ha Teppeki (IKI-220 50% WG), sprayed after bee foraging activity on flowering Phacelia tanacetefolia, on the acute mortality, colony development and foraging activity of honey bees. The exposure duration was 7 days.

 

The study was conducted on two test plots of 2300 m2 (EPPO guideline recommend 1500 m2) located 5 km from each other. The parameters flight density to assess exposure, pollen income to verify where the bees foraged on and adult bee mortality were recorded  daily at 3 days before and 7 days after the application of Teppeki. The colony status was recorded one day before and 7 and 21 days after the application of Teppeki.

The parameters provide sufficient information to evaluate the short term effect Teppeki on a honeybee colony.

 

The test design meets the EPPO guideline which provides a reasonable foraging conditions and exposure for the honeybee colonies.

 

The mean number of bees foraging on 1 m2  around noon was approximately 22.5 in the control site and 27.3 in the test site. The day after spraying, the mean number of foraging bees on 1 m2 around noon was approximately 30. The recordings were sufficient to assess foraging activity. The number of foraging bees on the sprayed crop was sufficient to provide a good exposure. The number of four colonies per test site meets the requirement of the EPPO guideline 170 (3). The number of bees per colony, required according to the guideline, at east 10 000 bees is not specifically recorded. However the number of occupied gaps between the frames was recorded. A fully occupied frame (Deutsch Normalmass (22 x 37 cm  is occupied by approximately 800 - 900 bees. A gap between two frames can contain about 1600 bees. As the number of gaps between the frames at the start of the test was about 15, the number of bees met the guideline. The number of frames containing brood met the requirements.  

Mortality was recorded in the traps and on gauze placed in front of the hives. The mean number of daily mortality before application on the gauze strips was 1.7 and 4 for the control- and test site respectively. After application these numbers were 0.6 and 0.6. In the traps, the mean number of daily mortality before application was 20.1 and 20.3 for the control- and test site respectively. After application these numbers were 12.8 and 3.5. The number of dead bees in the traps after Teppeki application varied significantly in the control traps and was rather stable in the traps in front of the test colonies. Overall there was no statistically significant difference in adult bee mortality in the colonies placed at the control- and test sites. The variation of daily mortality in the traps in front of the hives at the control sites can be considered as normal variation. 

 

Flight density and adult mortality were recorded up to 7 days after Teppeki application. After 7 days, foraging activity decreased, which was also seen in the pollen storage check on day 7 and day 21. During the 7 days after Teppeki application exposure to the crop was demonstrated by  the ratio of blue (Phacelia) pollen of 46 - 66% of the pollen flow. A 7-day exposure is the minimum exposure duration in field trials according to the European and Mediterranean Plant Protection Organization PP 1/170 (3); the revised guideline EPPO 1/170 (4) updated 2010-09 recommends assessments of the adult mortality up to 14 days.

The duration of 21 days is a minimal one, to evaluate worker brood development as the brood cycle of the honey bee brood lasts 21 days. The recommended period post treatment for the evaluation of brood effect according to both the EPPO 1/170(3) and 1/170(4) guideline mentioned above is 28 days. Possible delayed effects of brood starting after the beginning of the exposure can be less evaluated as the checks were not continued up till 28 days.

 

Although recordings of mortality met the minimum requirement (EPPO 1/170(3) of the exposure (mortality 7 days) and recording of brood development was shorter than de recommended period, the recordings provide sufficient sound data to evaluate the acute impact of dried residue of Teppeki on honeybee colonies.

 

The statistics applied are applicable for the evaluation of the parameters:

 

In the study there was no positive control (known toxic). Although a positive control provides information about foraging activity and exposure it is not required for field tests  (EPPO PP 170 (3), checking the foraging activity by recording and determining the botanic origin (microscope or colour)  of the pollen income  is a simple way to evaluate foraging activity and exposure of the pollen foragers. There is no minimal requirement of fraction incoming pollen loads to assess the exposure recommended in EPPO 1/170 (3) and (4). The contribution of approximately 50% of pollen from the treated plot demonstrates exposure of at least half of the pollen collecting bees. No data are required about the fraction nectar collecting bees in the guidelines mentioned above.

 

Based on the data reported and statistical methods applied to evaluate the results the conclusion of the report, that there was no impact of Teppeki applied in the evening after bee foraging at 80 g a.i./ ha  is justifiable. Taken into account: exposure 7 days, exposure of approximately half of the pollen foragers and brood check 21 days after start exposure which meet, except the last brood check on day 28, the requirements of the EPPO guideline 1/170(3) the most recent EPPO guideline at the time of testing.

 

7.1       Effects on birds

Birds can be exposed to the active substance flonicamid via natural food (sprayed insects, seeds, leafs), drinking water and as a result of secondary poisoning.

 

The threshold value for birds is based on the trigger from the RGB. This means that Toxicity-Exposure Ratio’s (TERs) for acute and short-term exposure should be ³ 10 and TER for chronic exposure should be ³ 5.

Table E.1 presents an overview of toxicity data.

 

Table E.1 Overview of toxicity data for birds

 

Endpoint

Value

Acute toxicity to birds:

LD50

1591 mg a.s./kg bw

Dietary toxicity to birds:

LC50

>301.8 mg a.s./kg bw/d

Reproductive toxicity to birds:

NOEL

59 mg a.s./kg bw/d

 

 

7.1.1    Natural food and drinking water

 

Sprayed products

Procedures for risk assessment for birds comply with the recommendations in the Guidance Document on Risk Assessment for Birds and Mammals under Council Directive 91/414/EEC (Sanco/4145/2000).

For the current application, uses can be categorized as leafy crops. Depending on the crop category, different indicator species are chosen. Table E. 2 shows which indicator species are relevant for which uses.

Table E. 2 Indicator species per use

Use

Crop

Indicator species

Flower and tuber bulbs

Leafy crops

medium herbivorous and insectivorous

 

Table E. 2 a-c show the TER values for birds. The estimated daily uptake values (ETE, Estimated Theoretical Exposure) the active substance flonicamid for acute, short-term and long-term exposure are calculated using the Food Intake Rate of the indicator species (FIR) divided by the body weight of the indicator species (bw), the Residue per Unit Dose (RUD), a time-weighted-average factor (fTWA, only for long term) and the application rate. For uses with frequency > 1, a MAF (Multiple Application Factor) may be applicable. The ETE is calculated as application rate * (FIR/bw) * RUD * MAF [* fTWA, only for long term]. The ETE is compared to the relevant toxicity figure. TER should be above the trigger for an acceptable risk.


 

Table E. 2a Acute risk for birds

Substance

FIR / bw

RUD

Application rate

 

(kg a.s./ha)

MAF

Acute ETE

LD50 (mg/kg bw/d)

TER

(mg/kg bw/d)

(trigger 10)

Medium herbivorous bird

flonicamid

0.76

87

0.07

1.3

6.01

1591

264

Insectivorous bird

 

 

 

 

 

flonicamid

1.04

52

0.07

-

3.78

1591

420

Table E. 2b Short-term risk for birds

Substance

FIR / bw

RUD

Application rate

 

(kg a.s./ha)

MAF

Short-term ETE

LC50 (mg/kg bw/d)

TER

(mg/kg bw/d)

(trigger 10)

Medium herbivorous bird

flonicamid

0.76

40

0.07

1.29

2.74

>301.8

>110

Insectivorous bird

 

 

 

 

 

flonicamid

1.04

29

0.07

-

2.11

>301.8

>143

Table E. 2c Long-term risk for birds

Substance

FIR / bw

RUD

Application rate

 

(kg a.s./ha)

MAF

ftwa

Long-term ETE

NOEL (mg/kg bw/d)

TER

 

(mg/kg bw/d)

(trigger 5)

Medium herbivorous bird

flonicamid

0.76

40

0.07

1.29

0.53

1.45

59

41

Insectivorous bird

 

 

 

 

 

 

flonicamid

1.04

29

0.07

-

-

2.11

59

28

 

Taking the results in Table E. 2 into account, it appears that all proposed uses meet the standards laid down in the RGB.

 

drinking water

The risk from exposure through drinking surface water is calculated for a small bird with body weight 10 g and a DWI (daily water intake) of 2.7 g/d. Surface water concentrations are calculated using TOXSWA (see paragraph 6.2.1). In the first instance, acute exposure is taken into account. The highest PIECwater is 0.600 mg/L. It follows that the risk of drinking water is (LD50 * bw) / (PIEC*DWI) = (1591 * 0.010) / (0.0006 * 0.0027) = 9.9 x 106. 

Since TER > 10, the risk is acceptable. 

 

7.1.2    Secondary poisoning

The risk as a result of secondary poisoning is assessed based on bioconcentration in fish and worms.

Since the log Kow of flonicamid < 3 (log Kow of -0.24), the potential for bioaccumulation is considered low and no further assessment is deemed necessary.

 

Conclusions birds

The product complies with the RGB.

 

7.2       Effects on aquatic organisms

 

7.2.1    Aquatic organisms

The risk for aquatic organisms is assessed by comparing toxicity values with surface water exposure concentrations from section 6.2. Risk assessment is based on toxicity-exposure ratio’s (TERs).

Toxicity data for aquatic organisms are presented in Table E. 3.

 

Table E. 3 Overview toxicity endpoints for aquatic organisms

Substance

Organism

Lowest

Toxicity value

 

 

L(E)C50 [mg/L]

NOEC

[mg/L]

[mg/L]

Flonicamid [a.s.]

Acute

 

 

 

 

Algae (Ps. Subcapitata)

> 100

 

> 100000

 

Invertebrates (D. magna)

> 100

 

> 100000

 

Fish (O. mykiss)

> 100

 

> 100000

 

Macrophytes (L. gibba)

119

 

119000

 

Chronic

 

 

 

 

Invertebrates (D. magna)

 

3.1

3100

 

Fish (P. promelas)

 

10

10000

 

 

 

 

 

TFNA [metabolite]

Acute

 

 

 

 

Algae (Ps. Subcapitata)

> 100

 

> 100000

 

Invertebrates (D. magna)

> 100

 

> 100000

 

Fish (O. mykiss)

> 100

 

> 100000

 

 

 

 

 

TFNA-OH [metabolite]

Acute

 

 

 

 

Algae (Ps. Subcapitata)

29

 

29000

 

Invertebrates (D. magna)

> 100

 

> 100000

 

Fish (O. mykiss)

> 100

 

> 100000

 

 

 

 

 

Teppeki* [formulation]

Acute

 

 

 

(expressed as a.s.)

Algae (Ps. Subcapitata)

43

 

43000

 

Invertebrates (D. magna)

>51

 

>51000

 

Fish (O. mykiss)

>51

 

>51000

* In the LoEP it is presented as IKI-220 50% WG. This is the same as Teppeki WG (500g flonicamid/L

 

These toxicity values are compared to the surface water concentrations calculated in section 6.2. Trigger values for acute exposure are 100 for invertebrates and fish (0.01 times the lowest L(E)C50-value) and 10 for algae and macrophytes (0.1 times the lowest EC50-value). Trigger values for chronic exposure are 10 for invertebrates and fish (0.1 times the lowest NOEC-values).

For acute and chronic risk, the initial concentration is used (PIEC) for TER calculation.  

In table E. 4 TER values for aquatic organisms are shown.


 

Table E. 4a TER values: acute

Use

 

Substance

PECsw

[mg a.s./L]

TERst

(trigger 10)

TERst

(trigger 100)

TERst

(trigger 100)

TERst

(trigger 10)

 

 

 

Algae

Invertebrates

Fish

Macrophytes

 

 

 

spring

spring

spring

spring

Flower and tuber bulbs

Flonicamid

0.6

2 x 105

2 x 105

2 x 105

2 x 105

Flower and tuber bulbs

TFNA

0.05

2 x 106

2 x 106

2 x 106

-

Flower and tuber bulbs

TFNA-OH

0.056

5 x 105

2 x 106

2 x 106

-

Flower and tuber bulbs

Teppeki

0.6

7 x 104

9 x 104

9 x 104

-

 

Table E. 4b TER values: chronic

Use

 

Substance

PECsw

[mg a.s./L]

TERlt

(trigger 10)

TERlt

(trigger 10)

 

 

 

Invertebrates

Fish

 

 

 

spring

spring

Flower and tuber bulbs

Flonicamid

0.6

5 x 103

2 x 104

 

Taking the results in Table E. 4a and b into account, the acute TERs for fish and invertebrates are above the relevant Annex VI triggers of 100 and the acute TERs for algae and Lemna are above the relevant Annex VI triggers of 10. The chronic TERs for fish and  invertebrates are above the relevant Annex VI triggers of 10. Thus, it appears that for the active substance flonicamid, the proposed uses meet the standards for aquatic organisms as laid down in the RGB.

 

7.2.2    Risk assessment for bioconcentration

Since logKow of flonicamid is < 3, experimental data are not required. A BCF-value of 0.25 L/kg can be calculated from logKow of -0.24.

 

Since this value is below 100 L/kg, the risk for bioconcentration is small. Therefore the active substance flonicamid meets the standards for bioconcentration as laid down in the RGB.

 

7.2.3        Risk assessment for sediment organisms

None of the metabolites is found in sediment at levels > 10% after 14 days.

 

The water–sediment study indicates that over 10% of flonicamid is found in the sediment after 14 days. The NOEC for daphnids, however, is above 0.1 mg/L and therefore, there is no potential risk for sediment organisms.

 

Nevertheless, there is data available regarding the toxicity of flonicamid to the sediment organisms.

 

The NOEC value for Chironomus is 25000 µg/L. When this value is examined against the PIEC in water, the TER value is 4 x 104 and the trigger value of 10 is exceeded. Therefore, the active substance flonicamid meets the standards for sediment organisms as laid down in the RGB.

 

Conclusions aquatic organisms

The proposed applications meet the standards for aquatic organisms.

 

7.3       Effects on terrestrial vertebrates other than birds

Mammals can be exposed to the active substance flonicamid via natural food (sprayed insects, seeds, leafs), drinking water and as a result of secondary poisoning.

 

The threshold value for mammals is based on the trigger from the RGB. This means that the Toxicity-Exposure Ratio (TER) for acute exposure should be ³ 10 and TER for chronic exposure should be ³ 5. Dietary toxicity is not taken into account for mammals.

Table E. 5 presents an overview of toxicity data.

 

Table E. 5 Overview of toxicity data for mammals

 

Endpoint

Value

Acute toxicity to mammals:

LD50

884 mg a.s./kg bw

Reproductive toxicity to mammals:

NOEL

25 mg a.s./kg bw/d

 

7.3.1    Natural food and drinking water

 

Sprayed products

Procedures for risk assessment for mammals comply with the recommendations in the Guidance Document on Risk Assessment for Birds and Mammals under Council Directive 91/414/EEC (Sanco/4145/2000).

For the current application, uses can be categorized as leafy crops. Depending on the crop category different indicator species are chosen. Table E. 6 shows which indicator species are relevant for which uses.

Table E. 6 Indicator species per use

Use

Crop

Indicator species

Flower and tuber bulbs

Leafy crops

medium herbivorous

 

Table E. 6 a-b show the estimated daily uptake values (ETE, Estimated Theoretical Exposure) for acute and long-term exposure, using the Food Intake Rate of the indicator species (FIR) divided by the body weight of the indicator species (bw), the Residue per Unit Dose (RUD), a time-weighted-average factor (fTWA, only for long term) and the application rate. For uses with frequency of > 1, a MAF (Multiple Application Factor) may be applicable. The ETE is calculated as application rate * (FIR/bw) * RUD * MAF [* fTWA, only for long term]. The ETE is compared to the relevant toxicity figure. TER should be above the trigger for an acceptable risk.

Table E. 6a Acute risk for mammals

Substance

FIR / bw

RUD

Applica-tion rate

 

(kg a.s./ha)

MAF

Acute ETE

LD50 (mg/kg bw/d)

TER

(mg/kg bw/d)</