Toelatingsnummer 12409 N

VYDATE 10G  

 

12409 N

 

 

 

 

 

 

 

 

HET COLLEGE VOOR DE TOELATING VAN

GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

1 UITBREIDING TOELATING

 

Gelet op de aanvraag d.d. 30 juni 2006 (20060445 UG) van

 

Du Pont de Nemours (Nederland) B.V. Agricultural Products (Station 18M)

Baanhoekweg 22

3313 LA  DORDRECHT

 

 

tot uitbreiding van de gebruiksdoeleinden van de toelating als bedoeld in artikel 28, eerste lid, Wet gewasbeschermingsmiddelen en biociden (Stb. 2007, 125) voor het gewasbeschermingsmiddel, op basis van de werkzame stof oxamyl

 

VYDATE 10G

 

gelet op artikel artikel 23, eerste lid, Wet gewasbeschermingsmiddelen en biociden,

 

BESLUIT HET COLLEGE als volgt:

 

§ I  Uitbreiding

1. Het gebruiksgebied van het middel VYDATE 10G wordt met ingang van datum dezes uitgebreid met de toepassing als grondbehandelingsmiddel:

- in de grondgebonden teelten van bloemisterijgewassen;

- bij potplanten;

- in de teelt van bloemzaadgewassen;

- in de teelt van boomkwekerijgewassen en

- op vermeerderingsvelden van aardbeien.

     Voor de gronden waarop dit besluit berust wordt verwezen naar bijlage II bij dit besluit.

2.      De toelating geldt tot 30 juli 2010.

 

§ II  Samenstelling, vorm en verpakking

De toelating geldt uitsluitend voor het middel in de samenstelling, vorm en de verpakking als waarvoor de toelating is verleend.

 

 

§ III  Gebruik

Het middel mag slechts worden gebruikt met inachtneming van hetgeen in bijlage I onder A bij dit besluit is voorgeschreven.

 

§ IV Classificatie en etikettering

 

Gelet op artikel 29, eerste lid, sub d, Wet gewasbeschermingsmiddelen en biociden,

 

1.    De aanduidingen, welke ingevolge artikel 36 van de Wet milieugevaarlijke stoffen en artikelen 14, 15a, 15b, 15c en 15e van de Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten op de verpakking moeten worden vermeld, worden hierbij vastgesteld als volgt:

 

aard van het preparaat: granulaat of korrel

 

werkzame stof:

gehalte:

oxamyl

10 %

 

letterlijk en zonder enige aanvulling:

 

andere zeer giftige, giftige, bijtende of schadelijke stof(fen):  

-

 

gevaarsymbool:

aanduiding:

T

Vergiftig

N

Milieugevaarlijk

 

Waarschuwingszinnen: 

 

Vergiftig bij opname door de mond.

Vergiftig voor in het water levende organismen; kan in het aquatisch milieu op lange termijn schadelijke effecten veroorzaken.

 

Veiligheidsaanbevelingen:

 

Deze stof en de verpakking op veilige wijze afvoeren. (Deze zin hoeft niet te worden vermeld op het etiket indien u deelneemt aan het verpakkingenconvenant, en op het etiket het STORL-vignet voert, en ingevolge dit convenant de toepasselijke zin uit de volgende verwijderingszinnen op het etiket vermeldt:

1)      Deze verpakking is bedrijfsafval, mits deze is schoongespoeld, zoals wettelijk is voorgeschreven.

2)      Deze verpakking is bedrijfsafval, nadat deze volledig is geleegd.

3)      Deze verpakking dient nadat deze volledig is geleegd te worden ingeleverd bij een KCA-depot. Informeer bij uw gemeente.)

Draag geschikte handschoenen en beschermende kleding.

Bij een ongeval of indien men zich onwel voelt onmiddellijk een arts raadplegen (indien mogelijk hem dit etiket tonen).

Voorkom lozing in het milieu. Vraag om speciale instructies / veiligheidsgegevenskaart.

 

Specifieke vermeldingen:

 

Volg de gebruiksaanwijzing om gevaar voor mens en milieu te voorkomen.

 

2.    Behalve de onder 1. bedoelde en de overige bij de Wet Milieugevaarlijke Stoffen en Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten voorge­schreven aanduidingen en vermeldingen moeten op de verpakking voorkomen:

 

a.       letterlijk en zonder enige aanvulling:
het wettelijk gebruiksvoorschrift
De tekst van het wettelijk gebruiksvoorschrift is opgenomen in Bijlage I, onder A.

 

b.      hetzij letterlijk, hetzij naar zakelijke inhoud:
de gebruiksaanwijzing
De tekst van de gebruiksaanwijzing is opgenomen in Bijlage I, onder B.
De tekst mag worden aangevuld met technische aanwijzingen voor een goede bestrijding mits deze niet met die tekst in strijd zijn
.

 

c.      bij het toelatingsnummer een cirkel met daarin de aanduiding W.4.

 

2 DETAILS VAN DE AANVRAAG

 

2.1 Aanvraag

Het betreft een aanvraag tot uitbreiding van het gebruiksgebied van het middel VYDATE 10G (12409 N), een middel op basis van de werkzame stoffen oxamyl. Het middel is bij besluit van 28 februari 2003 reeds toegelaten als grondbehandelingsmiddel in de teelt van bieten, aardappelen, lelies, wortelen en spruitkool. Het middel is bij dit besluit toegelaten tot
30 juli 2010. Met onderliggende aanvraag wordt toelating als grondbehandelingsmiddel in de teelt van bloemisterijgewassen (grondgebonden), potplanten, bloemzaadgewassen, boomkwekerijgewassen en op vermeerderingsvelden van aardbeien gevraagd.

 

2.2 Informatie met betrekking tot de stof

Oxamyl is een bestaande werkzame stof. De stof is per 1 augustus 2006 geplaatst op Annex I van gewasbeschermingsrichtlijn 91/414/EEG.

 

2.3 Karakterisering van het middel

Vydate 10G is een nematicide/insecticide op basis van oxamyl. Oxamyl heeft een contact en systemische werking. De stof behoort tot de chemische groep van de oxim-carbamaten. De werking van het middel berust met name op de inactivatie van acetylcholinesterase, dat betrokken is bij de zenuwprikkeloverdracht. Wanneer acetylcholinesterase geďnactiveerd wordt, leidt dit tot verlamming en kunnen de nematoden zich niet meer voeden.

Het middel wordt gerekend tot de droge grondontsmetters. De naam wordt ontleend aan het feit dat deze middelen in vaste vorm toegediend worden, in tegenstelling tot de natte grondontsmetters, die in vloeibare vorm worden toegediend. Het middel heeft een relatief korte residuele werking. Een tweede behandeling is echter niet nodig, omdat de toepassing gericht is op het zeker stellen van de opbrengst en de kwaliteit, waarvoor een behandeling in het zaai- en/of plantstadium van deze gewassen volstaat.

 

2.4 Voorgeschiedenis

De aanvraag en de verschuldigde aanvraagkosten zijn op 6 juli 2006 ontvangen. Op 20 oktober 2006 is de aanvraag onvolledig bevonden voor de aspecten werkzaamheid en milieu. De ontbrekende gegevens zijn ontvangen op 13 november 2006. De aanvraag is op 21 februari 2007 in behandeling genomen. Op 27 maart 2007 werden de verschuldigde beoordelingskosten ontvangen.  Bij brief d.d. 25 mei 2007 zijn naar aanleiding van collegevergadering C-181.3.22 (9 mei 2007) voor het aspect ecotoxicologie aanvullende vragen gesteld. Op 1 augustus 2007 zijn aanvullende gegevens ontvangen. Op 9 oktober 2007 werden de aanvullende gegevens in behandeling genomen. Op 12 november 2007 werden de verschuldigde beoordelingskosten ontvangen. De 48-wekentermijn eindigt op 13 oktober 2008.

 

3  RISICOBEOORDELINGEN

Het gebruikte toetsingskader voor de beoordeling van deze aanvraag is de Handleiding toelating bestrijdingsmiddelen (HTB) versie 1.0.

 

3.1  Fysische en chemische eigenschappen

De aard en de hoeveelheid van de werkzame stoffen en de in toxicologisch en ecotoxicologisch opzicht belangrijke onzuiverheden in de werkzame stof en de hulpstoffen zijn bepaald. De identiteit van het middel is vastgesteld. De fysische en chemische eigenschappen van het middel zijn vastgesteld en voor juist gebruik en adequate opslag van het middel aanvaardbaar geacht (artikel 28, eerste lid, sub c en e, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van de evaluatie van het middel en de stof staat beschreven in Hoofdstuk 2, Physical and Chemical Properties, in Bijlage II bij dit besluit.

 

3.2  Analysemethoden

De geleverde analysemethoden voldoen aan de vereisten. De residuen die het gevolg zijn van geoorloofd gebruik die in toxicologisch opzicht of vanuit milieu oogpunt van belang zijn, kunnen worden bepaald met algemeen gebruikte passende methoden (artikel 28, eerste lid, sub d, Wet gewasbeschermings-middelen en biociden).

De beoordeling van de evaluatie van de analysemethoden staat beschreven in Hoofdstuk 3, Methods of Analysis, in Bijlage II bij dit besluit.

 

3.3  Risico volksgezondheid

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, geen directe of indirecte schadelijke uitwerking heeft op de gezondheid van de mens. De voorlopige vastgestelde maximum residugehalten op landbouwproducten zijn aanvaardbaar (artikel 28, eerste lid, sub b, onderdeel 4 en sub f, Wet gewasbeschermingsmiddelen en biociden.
Het profiel humane toxicologie inclusief de beoordeling van het risico voor de toepasser staat beschreven in Hoofdstuk 4 Mammalian Toxicology, in Bijlage II bij dit besluit.

Het residuprofiel, de vastgestelde maximum residugehalten en de beoordeling van het risico voor de volksgezondheid staan beschreven in Hoofdstuk 5, Residues in bijlage II behorende bij dit besluit.

 

3.4  Risico voor het milieu

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, geen voor het milieu onaanvaardbaar effect heeft, waarbij in het bijzonder rekening wordt gehouden met de volgende aspecten:

-          de plaats waar het middel in het milieu terechtkomt en wordt verspreid, met name voor wat betreft besmetting van het water, waaronder drinkwater en grondwater,

-          de gevolgen voor niet-doelsoorten.

(artikel 28, eerste lid, sub b, onderdeel 5, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van het risico voor het milieu staat beschreven in Hoofdstuk 6, Environmental Fate and Behaviour, en Hoofdstuk 7, Ecotoxicology, in Bijlage II bij dit besluit.

Het profiel gedrag en lotgevallen staat beschreven in Hoofdstuk 6 in Bijlage II bij dit besluit. Het profiel Ecotoxicology staat beschreven in Hoofdstuk 7 in Bijlage II bij dit besluit.

 

3.5  Werkzaamheid

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, voldoende werkzaam is en geen onaanvaardbare uitwerking heeft op planten of plantaardige producten (artikel 28, eerste lid, sub b, onderdelen 1 en 2, Wet gewasbeschermingsmiddelen en biociden).

De beoordeling van het aspect werkzaamheid staat beschreven in Hoofdstuk 8, Efficacy, in Bijlage II bij dit besluit.

 

3.6  Eindconclusie

Bij gebruik volgens het gewijzigde Wettelijk Gebruiksvoorschrift/Gebruiksaanwijzing is de uitbreiding voor de gevraagde doeleinden van het middel VYDATE 10G op basis van de werkzame stoffen oxamyl voldoende werkzaam en heeft het geen schadelijke uitwerking op de gezondheid van de mens en het milieu (artikel 28, eerste lid, Wet gewasbeschermingsmiddelen en biociden).

 

 

 

Degene wiens belang rechtstreeks bij dit besluit is betrokken kan gelet op artikel 119, eerste lid, Wet gewasbeschermingsmiddelen en biociden en artikel 7:1, eerste lid, van de Algemene wet bestuursrecht, binnen zes weken na de dag waarop dit besluit bekend is gemaakt een bezwaarschrift indienen bij: het College voor de toelating van gewasbeschermingsmiddelen en biociden (Ctgb), Postbus 217, 6700 AE WAGENINGEN. Het Ctgb heeft niet de mogelijkheid van het elektronisch indienen van een bezwaarschrift opengesteld.

 

 

Wageningen, 7 maart 2008

 

 

HET COLLEGE VOOR DE TOELATING VAN  GEWASBESCHERMINGSMIDDELEN EN  BIOCIDEN,





(voorzitter)

 

 



HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE I bij het besluit d.d. 7 maart 2008 tot uitbreiding van de toelating van het middel VYDATE 10G, toelatingnummer 12409 N

 

 

A.

WETTELIJK GEBRUIKSVOORSCHRIFT

 

Toegestaan is uitsluitend het gebruik als grondbehandelingsmiddel:

  1. in de teelt van bieten, mits toegepast als rijenbehandeling in een arbeidsgang met het zaaien;
  2. in de teelt van aardappelen, mits toegepast kort voor of tijdens het poten op zodanige wijze dat het middel in een arbeidsgang wordt gestrooid en ingewerkt;
  3. in de teelt van lelies, met dien verstande dat het middel in één arbeidsgang wordt toegepast  en ingewerkt;
  4. in de teelt van wortelen, mits toegepast als rijenbehandeling in een arbeidsgang met het zaaien óf mits toegepast kort voor of tijdens het poten op zodanige wijze dat het middel in een arbeidsgang wordt gestrooid en ingewerkt;
  5. in de teelt van spruitkool, met dien verstande dat het middel in één arbeidsgang wordt toegepast en ingewerkt;
  6. in de grondgebonden teelten van bloemisterijgewassen, mits toegepast voor of tijdens het uitplanten en met dien verstande dat het middel direct na toepassing moet worden ingewerkt;
  7. bij potplanten, mits toegepast voor het oppotten;
  8. in de teelt van bloemzaadgewassen met dien verstande dat het middel direct na toepassing moet worden ingewerkt;
  9. in de teelt van boomkwekerijgewassen, met dien verstande dat het middel direct na toepassing moet worden ingewerkt;
  10. op vermeerderingsvelden van aardbeien met dien verstande dat het middel direct na de toepassing moet worden ingewerkt.

 

Om het grondwater te beschermen mag dit product niet worden gebruikt in grondwaterbeschermingsgebieden.

 

Om de vogels en zoogdieren te beschermen moet u gemorst product verwijderen.

 

Het middel is uitsluitend bestemd voor professioneel gebruik.

 

 

B.

GEBRUIKSAANWIJZING

 

VYDATE 10G is een systemisch werkend middel in granulaatvorm dat insecten- en aaltjesdodende eigenschappen bezit. Het wordt in de grond gebracht en van daaruit door de plantwortels opgenomen en in de plant verspreid.


 

Toepassingen

Bieten, tegen bietenkevertjes, springstaarten of aaltjes.
Ter voorkoming van schade door het bietenkevertje, springstaarten of aaltjes het middel tijdens het zaaien in de zaaivoor aanbrengen door middel van een aan de zaaimachine gekoppelde deugdelijke granulaatstrooier of opbouwset.

Met name schade veroorzaakt door aaltjes in de beginontwikkeling van het gewas wordt voorkomen.

Dosering:

 

Aardappelen, tegen aaltjes

Volveldsbehandeling
Ter voorkoming van schade door aaltjes dient het middel vlak voor of tijdens het pootklaar maken van de grond volvelds te worden gestrooid.

Het middel zo gelijkmatig mogelijk over het oppervlak verdelen met daarvoor geschikte strooiapparatuur, en direct inwerken tot een diepte van 10 ŕ 15 cm. Het meest geschikt voor het inwerken is een frees, maar ook andere werktuigen waarmee een gelijkmatige menging wordt bereikt, zijn bruikbaar.
Dosering: 40 kg per ha

Toplaagbehandeling
Op percelen waar na de najaarsontsmetting met vloeibare middelen de grond niet kerend is bewerkt kan voorafgaande aan een eventuele grondbewerking in het voorjaar
VYDATE 10G volvelds worden gestrooid en ingewerkt in de toplaag (5 cm) van de grond.

De toplaag wordt bij de najaarsontsmetting namelijk het slechtst ontsmet en verkrijgt zo een extra behandeling. Deze toepassing dient zo kort mogelijk voor het poten te geschieden.
Dosering: 20 kg per ha

 

Rijenbehandeling tijdens het poten

Bij tegen Globodera pallida (het witte aardappelcystenaaltje) partieel resistente rassen kan het middel tijdens het poten, met behulp van op de pootmachine opgebouwde apparatuur worden uitgestrooid in de aardappelrug op een strook met een breedte van 25-30 cm.
Hierdoor wordt de beginontwikkeling van het gewas bevorderd, waardoor later tijdens het groeiseizoen de resistente eigenschappen beter tot hun recht komen.

Schade, zowel opbrengst- als kwaliteitsverlies, door aaltjes van met name wortellesie- en wortelknobbelaaltjes, wordt grotendeels voorkomen door deze behandeling.
Dosering
: 10 kg per ha.

 

Lelies, tegen aaltjes

VYDATE 10G kan voor of na het planten ingezet worden tegen wortellesieaaltjes

Voor planten:

Het middel dient vlak voor of tijdens het plantklaar maken van de grond volvelds te worden gestrooid. Het middel zo gelijkmatig mogelijk over het oppervlak verdelen met daarvoor geschikte strooiapparatuur en direct inwerken tot een diepte van 10 ŕ 15 cm.

Na het planten:

Direct na het planten (in ieder geval voor opkomst van het gewas) een éénmalige rijenbehandeling boven de geplante bollen uitvoeren met daarvoor in aanmerking komende apparatuur waarmee het middel in de grond wordt gebracht en direct wordt toegedekt.

Dosering: 40 kg per ha

 

Wortelen, tegen aaltjes

VYDATE 10G kan als rijenbehandeling tijdens het zaaien of als volveldstoepassing kort voor of tijdens het zaaien worden ingezet tegen vrijlevende aaltjes, wortellesieaaltjes en wortelknobbelaaltjes.

Rijentoepassing 

Het middel tijdens het zaaien in de zaaivoor aanbrengen door middel van een aan de zaaimachine gekoppelde daartoe geëigende granulaatstrooier of apparaat.

Dosering: 10 kg per ha, gebaseerd op een rugafstand van minimaal 50 cm breed.

 

Volveldstoepassing

Het middel dient vlak voor of tijdens het plantklaar maken van de grond volvelds te worden gestrooid. Het middel zo gelijkmatig mogelijk over het oppervlak verdelen met daarvoor geschikte strooiapparatuur en direct inwerken tot een diepte van 10 ŕ 15 cm.

Dosering: 40 kg per ha.

 

Spruitkool, tegen aaltjes

VYDATE 10G kan ingezet worden tegen bietencystenaaltjes.

Ter beperking van schade door bietencystenaaltjes het middel kort voor het uitplanten strooien en direct inwerken met een frees of een ander werktuig waarmee een gelijkmatige menging wordt bereikt.

Dosering: 40 kg per ha.

 

Grondgebonden teelten van bloemisterijgewassen, tegen aaltjes.

Het middel vóór het uitplanten gelijkmatig volvelds uitstrooien en direct daarna inwerken tot een diepte van 15 cm.
Dosering: 400 gram per are.

 

Potplanten, tegen aaltjes.

Ter voorkoming van schade door onder andere wortelknobbelaaltjes de potgrond direct voor het oppotten behandelen.

Dosering: 40 gram per m3 grond.

 

Bloemzaadgewassen, tegen aaltjes.
Het middel vóór het zaaien gelijkmatig volvelds uitstrooien en daarna direct inwerken of tijdens het zaaien met aangepaste zaaiapparatuur een rijenbehandeling uitvoeren in de zaaivoor.

Dosering:  volvelds: 400 gram per are
rijenbehandeling: 0.5 gram per strekkende meter bij een rijafstand van 50 cm.

 

Boomkwekerijgewassen, tegen aaltjes.

Ter voorkoming van schade door aaltjes wordt het middel kort voor het zaaien of planten gelijkmatig volvelds gestrooid en direct daarna ingewerkt. Met deze behandeling wordt meestal geen afname van de aaltjesbesmetting bereikt, maar wordt groeiremming door aaltjes voorkomen.

Dosering: 40 kg per ha.

 

Aardbeien (vermeerderingsvelden),  tegen aaltjes.

Vlak voor het planten het middel gelijkmatig volvelds strooien en ongeveer 15 cm diep inwerken, bij voorkeur met een frees.

Dosering: 40 kg per ha.

 

 

 

 



HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE II bij het besluit d.d. 7 maart 2008 tot uitbreiding van de toelating van het middel VYDATE 10G, toelatingnummer 12409 N

 

 

RISKMANAGEMENT

 

 

 

Contents                                                                  Page

 

 

1.   Identity of the plant protection product          2

 

2.   Physical and chemical properties                    3

 

3.   Methods of analysis                                           8

 

4.   Mammalian toxicology                                       11

 

5.   Residues                                                             18

 

6.   Environmental fate and behaviour                  21

 

7.   Ecotoxicology                                                     41

 

8.   Efficacy                                                                62

 

9.   Conclusion                                                          64

 

10. Classification and labelling                              64

 


1.         Identity of the plant protection product

 

1.1       Applicant

Du Pont De Nemours B.V.

Baanhoekweg 22

3311 LA Dordrecht

 

1.2       Identity of the active substance

Common name

Oxamyl

Name in Dutch

Oxamyl

Chemical name

N,N-dimethyl-2-methylcarbamoyloxyimino-2-(methylthio) acetamide [IUPAC]

CAS no

23135-22-0

EEG no

245-445-3

 

The active substance was included on August 1st, 2006 in Annex 1 of directive 91/414/EEC.

 

1.3       Identity of the plant protection product

Name

Vydate 10G

Formulation type

GR

Content active substance

10% pure oxamyl

 

The formulation is identical to that assessed for the inclusion of the active substance  in Annex 1 of directive 91/414/EEC.

 

1.4       Function

Insecticide/nematicide.

 

1.5       Uses applied for

 

Uses

F= Field

G= Glasshouse

Dose a.s.

(g a.s./ha)

Number of applications

Interval between applications

Application time (growth stage and season)

Strawberry (propagation material) (F)

4000

1

-

Pre-planting

April-May

Tree nurseries (F)

4000

1

-

Pre-planting

April-May

Floriculture (F/G)

4000

1

-

Pre-planting

F – April-June

G- Jan-Dec

Flowers seed production (F) broadcast

4000

1

-

Pre-planting/pre-sowing

April-May

Flowers seed production (F), in the furrow (=rij)

1000

1

-

At planting/sowing

April-May

Potted plants (F/G)

4 / m3

1

-

Jan-Dec

 

1.6       Background to the application

The application concerns an extension of the authorisation.

 

 

 

1.7       Packaging details

 

1.7.1    Packaging description

Material:

PE bag or box

Capacity:

10 kg (bag)

20 kg (box)

Type of closure and size of opening:

Bag: welded

Box: 50mm valve

Other information

UN/ADR approved

 

1.7.2    Detailed instructions for safe disposal

See application form and MSDS

 

 

2.                  Physical and chemical properties

 

2.1              Active substance: oxamyl

Data about the identity and the physical and chemical properties are taken from the List of Endpoints (EFSA conclusion, January 2005). Changes and/or additions are taken up in italics.

 

Identity

Active substance (ISO Common Name)

Oxamyl

Chemical name (IUPAC)

N,N-dimethyl-2-methylcarbamoyloxyimino-2-(methylthio) acetamide

Chemical name (CA)

Methyl 2-(dimethylamino)-N-methylamino)carbonyl]oxy]-2-oxoethanimidothioate

CIPAC No

342

CAS No

23135-22-0

EEC No (EINECS or ELINCS)

245-445-3

FAO Specification (including year of                                publication)

Data not available

Minimum purity of the active substance as manufactured (g/kg)

970 g/kg

Identity of relevant impurities (of toxicological, environmental and/or other significance) in the active substance as manufactured (g/kg)

None identified.

Molecular formula

C7H13O3N3S

Molecular mass

219.3 g/mol

Structural formula

 

 


Physical-chemical properties

Melting point (state purity)

98.5 °C- 100 °C (99.9%)

Boiling point (state purity)

Decomposition occurs before a boiling point is reached

Temperature of decomposition

160 oC (DSC analysis)

Appearance (state purity)

White crystalline solid (purity not stated) *

Pale yellow/green liquid (43.3% technical concentrate)

Relative density (state purity)

1.313 g/cmł (density) at 20 °C (100%)

Surface tension

73.1 mN/m at 20 °C (conc. 0.953 g/L)

Vapour pressure (in Pa, state temperature)

5.12 x 10-5 Pa at 25 °C

Henry’s law constant (in Pa·m3·mol-1)

4.89 x 10-8 x Pa x m3 x mol-1 at 25 °C

Solubility in water (in g/l or mg/l, state                                   temperature)

148.1g/l at 20°C at pH 5.0 (for stability reasons)

Solubility in organic solvents (in g/l or

 mg/l, state temperature)

At 20 oC:

n-heptane                   10.5 mg/L
dichloromethane        > 250 g/kg
methanol                    > 250 g/kg
acetone                      > 250 g/kg
ethyl acetate               3.14 g/L
xylene                         41.3 g/L

Partition co-efficient (log Pow) (state pH and temperature)

The log Po/w at 25 °C and pH 5 = - 0.44 (not tested at different pH values, due to stability issues)

Hydrolytic stability (DT50) (state pH and temperature)

The half life of oxamyl was determined to be

> 31 days at pH 5 and 25 °C

     8 days at pH 7 and 25 °C

     3 hours at pH 9 and 25 °C

Dissociation constant

pKa estimated to be = -2.11

UV/VIS absorption (max.) (if absorption >290 nm state ε at wavelength)

At 25 °C the e at 290nm was determined to be

At pH 2 = 61.6

At pH 7 = 80.1

At pH>10 = 1154

Photostability (DT50) (aqueous, sunlight,  state pH)

t1/2 was determined to be = 7 days at pH 5 and
at 25 °C

Quantum yield of direct photo-

transformation in water at λ > 290 nm

0.0187

Photochemical oxidative degradation in air

Half life for oxamyl following its reaction

with hydroxyl radicals in the air (12 hour day

: 1.5x 106 OH radicals) was calculated to be

= 5.7 hours.

Flashpoint

57.4 oC (42% technical concentrate)

Auto-flammability

303 oC (43.3% technical concentrate)

Oxidative properties

Not oxidising (theoretical assessment on technical concentrate)

Explosive properties

Not explosive (43.3% technical concentrate)

* No information is available in the monograph regarding purity of the test substance.


 

In the EFSA conclusion regarding the active substance oxamyl, the following was mentioned:

Some endpoints require the generation or submission of additional studies to be submitted to the Member States in order to ensure authorisations for use under certain conditions. This may particularly be the case for:

- the boiling point or temperature of decomposition;

- the auto-flammability of the dry technical material;

- the identity of impurities.

 

The auto-flammability of the dry technical material is not considered required, because oxamyl is processed as a 42% technical concentrate. A study is available. Results are displayed in the Listing of Endpoints.

 

Acceptable data regarding the boiling point and temperature of decomposition of the purified active ingredient were provided by the applicant.

 

The identity of impurities in the technical material has not been confirmed. Because the inclusion of oxamyl in annex 1 of 91/414/EEC results in a re-evaluation of the entire dossier as part of the re-registration process, the applicant has agreed to generate the necessary data and submit that information as part of the re-registration application.

 

2.2              Plant protection product: Vydate 10G

Data about plant protection product are taken from the DAR, its addenda and studies submitted by the applicant.

 

The product Vydate 10G is not dispersed for application, but directly applied.

Section

(Annex point)

Study

Guidelines and GLP

Findings

Evaluation and conclusion

B.2.2.1 (IIIA 2.1)

Appearance: physical state

Visual

Solid

Acceptable

B.2.2.2 (IIIA 2.1)

Appearance: colour

GLP

Visual

Blue-green

Acceptable

B.2.2.3 (IIIA 2.1)

Appearance: odour

GLP

Organoleptic

Slight solvent

Acceptable

B.2.2.4 (IIIA 2.2)

Explosive properties

GLP

EC A14

Not sensitive to mechanical shock, friction or heat. The product is not explosive.

Acceptable

B.2.2.5 (IIIA 2.2)

Oxidising properties

Theoretical assessment

Not oxidising

Acceptable

B.2.2.6 (IIIA 2.3)

Flammability

GLP

EC A10

Not highly flammable

Acceptable

B.2.2.7 (IIIA 2.3)

Auto-flammability

GLP

EC A16

> 400 oC

Acceptable

B.2.2.8 (IIIA 2.3)

Flash point

 

Not applicable

 

B.2.2.9 (IIIA 2.4)

Acidity / alkalinity

 

Not applicable

 

B.2.2.10 (IIIA 2.4)

pH

CIPAC MT 75

1% dispersion: 6.8

Acceptable

B.2.2.11 (IIIA 2.5)

Surface tension

 

Not applicable

 

B.2.2.12 (IIIA 2.5)

Viscosity

 

Not applicable

 

B.2.2.13 (IIIA 2.6)

Relative density

 

Not applicable

 

B.2.2.14

(IIIA 2.6)

Bulk (tap) density

GLP

CIPAC MT 159

0.72 g/mL (loose)

0.81 g/mL (tapped)

Acceptable

B.2.2.14 (IIIA 2.7)

Storage stability

GLP

CIPAC MT 46

Stable for 14 days at 54 oC in unknown packaging.

 

Properties determined before and after storage: a.i. content, pH, attrition resistance, dust content, dry sieve test.

 

Decline in active ingredient content is nearly 5%.

Acceptable

B.2.2.15 (IIIA 2.7)

Shelf life

GIFAP monograph no. 17

 

CIPAC MT 58.2, 75, 171, 178

7.7% loss of active ingredient over 2 years storage at 20 oC in PE (bag).

 

Properties determined before and after storage: appearance, packaging stability, a.i. content, pH, dust content, attrition resistance, dry sieve / size range.

 

The analytical method used for determination of the active ingredient is not described in the test report.

 

No information regarding break down products is available (> 5% decline in a.i. content during storage).

Not acceptable

 

 

 

 

B.2.2.16

(IIIA 2.8)

Wettability

 

Not applicable

 

B.2.2.17 (IIIA 2.8)

Persistent foaming

 

Not applicable

 

B.2.2.18

(IIIA 2.8)

Suspensibility

 

Not applicable

 

B.2.2.19

(IIIA 2.8)

Spontaneity of dispersion

 

Not applicable

 

B.2.2.20

(IIIA 2.8)

Dilution stability

 

Not applicable

 

B.2.2.21

(IIIA 2.8)

Dry sieve test

 

See B.2.2.23 (particle size distribution)

 

B.2.2.22

(IIIA 2.8)

Wet sieve test

 

Not applicable

 

B.2.2.23

(IIIA 2.8)

Particle size distribution

GLP

CIPAC MT 58.2

% through 850 μm to 250 μm – 97.3%

% < 250 μm + 150 μm – 0.7%

% < 150 μm (includes loss) – 2.1%

total < 250 μm – 2.7%

Acceptable

B.2.2.24

(IIIA 2.8)

Content of dust/fines

GLP

CIPAC MT 171

3.2 mg (0.01%)

 

The product is nearly dust-free

Acceptable

B.2.2.25

(IIIA 2.8)

Attrition and friability

GLP

CIPAC MT 178

100%

Acceptable

B.2.2.26 (IIIA 2.8)

Emulsifiability, re-emulsifiability and emulsion stability

 

Not applicable

 

B.2.2.27

(IIIA 2.8)

Stability of dilute emulsion

 

Not applicable

 

B.2.2.28

(IIIA 2.8)

Flowability

GLP

CIPAC MT 172

Sample dropped through the sieve spontaneously.

 

The product is a free flowing granule.

Acceptable

B.2.2.29

(IIIA 2.8)

Pourability (rinsibility)

 

Not applicable

 

B.2.2.30

(IIIA 2.8)

Dustability

 

Not applicable

 

B.2.2.31

(IIIA 2.8)

Adherence and distribution to seeds

 

Not applicable

 

2.9.1

Physical compatibility with other products

 

Not applicable

 

2.9.2

Chemical compatibility with other products

 

Not applicable

 

 

No mixing with other plant protection products or adjuvants is proposed. No information is available on the behaviour of this product when mixed. Mixing with another product or adjuvant can therefore result in unexpected behaviour.

 

The product Vydate 10G is currently authorised for use on the Dutch market. Furthermore, the product will be re-evaluated during the re-registration process flowing from the inclusion of the active substance on annex I of 91/414/EEC. The applicant was informed the following data is missing and has agreed to generate additional studies to be submitted as part of the re-registration application of Vydate 10G:

1.      Procedure and validation of the analytical method for determination of the oxamyl content in the formulation used in the shelf-life study (Dennis S. Bloemer, 18 July 2001, DuPont-2671);

2.      Identification of the breakdown products of oxamyl after 2 years storage. A > 5% decline in active substance content was displayed in the shelf-life study (Dennis S. Bloemer, 18 July 2001, DuPont-2671).

 

Conclusion

For this extension for use of the product Vydate 10G, the physical and chemical properties of the active substance and the plant protection product are sufficiently described. Neither the active substance nor the product has any physical or chemical properties which would adversely affect the use according to the proposed use and label instructions.

 

2.3       Data requirements

No further data required.

 

 

3.      Methods of analysis

Description and data about the analytical methods are taken from the List of Endpoints (EFSA conclusion, January 2005). Changes and/or additions are taken up in italics.

 

3.1.      Analytical methods in technical material and plant protection product

Technical as (principle of method)

Technical oxamyl, with acetanilide as internal standard, is diluted in aqueous phosphoric acid (pH= 2.7). Sample is analysed by HPLC with uv detection at 240nm.

Impurities in technical as (principle of  method)

Impurities coded 13703, A2213, D2256, E2321, D2293, U1746, L2020 and 31144 are treated in the same manner as technical oxamyl. The analysis is carried out using HPLC with uv detection at 205nm. Quantitation is by comparison with known standards.

Impurities methanol, cylclohexanone and triethyl amine are analysed by GC with an FID detector following the dissolution of the sample in NN-dimethylformamide.

Preparation (principle of method)

Same analytical method as for the technical oxamyl.

 

Conclusion

The analytical methods concerning the active ingredient and the plant protection product have been evaluated in the monograph and are considered acceptable.

 

3.2       Residue analytical methods

Food/feed of plant origin (principle of method and LOQ for methods for monitoring purposes)

Food samples are extracted with acetone, cleaned up by SPE (aminopropyl-bonded silica cartridges). The sample is then analysed using RP HPLC coupled to a post column hydrolyser which releases the methyl amine and which is in turn derivatised with o-phthaldehyde. The residue is quantified using a fluorescence detector. 

LOQ was validated for selected crops at 0.01 to 0.1 mg/kg. Recovery levels were higher at the 0.01mg/kg as opposed to the 0.05 and 0.1mg/kg spiking levels indicating that the analysis of oxamyl using this analytical method may be difficult.

 

Not required for this extension (application on ornamentals; no residues are expected)

Food/feed of animal origin (principle of method and LOQ for methods for monitoring purposes)

Not required.

Soil (principle of method and LOQ)

Soil is extracted using formic acid:methanol: acetonitrile (5:39:156). The extract is centrifuged and the supernatant is evaporated to dryness prior to being dissolved in methanol/0.1% formic acid in 10mM ammonium acetate (10:90). Analysis was carried out using HPLC/MS/MS using the parent ion 236.9 m/z to daughter ion 71.8 m/z for oxamyl and the parent ion 162.6 m/z to daughter ion 72.1 m/z for the oxime.

LOQ: The method was validated at 0.0055 mg/kg for both the oxamyl and the oxime.

Water (principle of method and LOQ)

Water was cleaned by eluting through an SPE SAX cartridge in sequence with an SPE Oasis HLB cartridge. The sample was then analysed using HPLC/MS/MS using the parent ion 236.9 m/z to daughter ions 72 m/z and 90 m/z.

LOQ: The method was validated for 0.1mg/l in ground, drinking and surface waters.

Air (principle of method and LOQ)

Air was sucked through an Supelpak 20E XAD-2 porous polymer. This adsorbent was extracted using acetonitrile and the extract was analysed using HPLC/MS. The method was validated at a spiking level equivalent to 0.24 mg/m3.

Body fluids and tissues (principle of method and LOQ)

A method of analysis was presented for the determination of oxamyl in urine and in blood serum. The sample was extracted with ethyl acetate, cleaned up using GPC and analysed using GC/MS or GC/FPD. The method was validated in the range 0.01 to 0.1 mg/kg.

 

 

 

Definition of the residue and proposed MRL’s for oxamyl

Matrix

Definition of the residue for monitoring

MRL

Food/feed of plant origin

This extension does not involve application on edible crops. No residues are expected.

Food/feed of animal origin

No definition of the residue is proposed. No relevant residues are expected to occur in food/feed of animal origin.

 

Required LOQ

Soil

Oxamyl

0.05 mg/kg (default)

Drinking water

Oxamyl

0.1 µg/L (Dutch drinking water guideline)

Surface water

Oxamyl

26.8 µg/L (NOEC for Daphnia Magna)

Air

Oxamyl

0.3 mg/m3 (derived from the AOEL (0.001 mg/kg bw/day) according to SANCO/825/00)

Body fluids and tissues

Oxamyl

0.05 mg/l (blood)

0.1 mg/kg (tissues; meat or liver)

 

For the extension applied for no residues are expected.

 

The residue analytical methods for water, soil and air, evaluated in the DAR, are acceptable and suitable for monitoring of residues in the environment.

 

Conclusion

The submitted analytical methods meet the requirements. The methods are specific and sufficiently sensitive to enable their use for enforcement of the MRLs and for monitoring of residues in the environment.

 

3.3       Data requirements

No further data required regarding analytical methods.

 

3.4       Physical-chemical classification and labelling

 

Proposal for the classification of the active ingredient (symbols and R phrases)
(EU classification) concerning physical chemical properties

 

Symbol(s):

-

Indication(s) of danger: -

 

Risk phrase(s)

-

-

 

Proposal for the classification and labelling of the formulation concerning physical chemical properties

 

Based on the profile of the substance, the provided toxicology of the preparation, the  characteristics of the co-formulants, the method of application, the following labelling of the preparation is proposed:

 

Substances, present in the formulation, which should be mentioned on the label by their chemical name (other very toxic, toxic, corrosive or harmful substances):

-

Symbol:

-

Indication of danger:

-

R phrases

-

-

 

 

 

S phrases

-

-

 

 

 

Special provisions:
DPD-phrases

-

-

 

 

 

Child-resistant fastening obligatory?

Not applicable

Tactile warning of danger obligatory?

Not applicable

 

Explanation:

Hazard symbol:

-

Risk phrases:

-

Safety phrases:

-

Other:

-

 

The proposed labelling above is equal to the previous decision regarding the labelling of the plant protection product Vydate 10G (dated January 28th 2005).

 

 

4.      Mammalian toxicology

List of Endpoints

The final List of Endpoints presented below is taken from the final review report on oxamyl (EFSA Scientific Report, 2005, 26, 1-78; Conclusion on the Peer Review of Oxamyl). Where relevant, some additional remarks/information are given in italics.

 




Absorption, distribution, excretion and metabolism in mammals (Annex IIA, point 5.1)

Rate and extent of absorption:

Rapid: 80% within 24 hours at 1 mg/kg bw

Distribution:

Widely distributed after 7 days: highest concentrations in whole blood (0.1 mg equivalents/g) and in heart, liver, kidney, lungs, spleen and the gastro-intestinal tract (0.04 to 0.09 mg equivalents/g)

Potential for accumulation:

No evidence of accumulation

Rate and extent of excretion:

Initially rapid: 80.5% within 24 hours (80% in urine): 93% after 7 days (91% in urine): no sex-related differences in the excretion pattern

Metabolism in animals

Extensive: 0-11% unchanged oxamyl excreted by 24 hours: oxamyl hydrolysis to IN-A2213 followed by glucuronide conjugation: other metabolites include IN-N0079, IN-L2953, IN-D2708, and IN-KP532: extensive incorporation of tissue radioactivity into amino acids

Toxicologically significant compounds
(animals, plants and environment)

Parent compound; the main metabolites, IN-A2213 and IN-D2708, are generated in vivo and are considered to be adequately tested in studies involving DPX-D1410 based on the available data.

 

 

Acute toxicity (Annex IIA, point 5.2)

Rat LD50 oral

3.1 mg/kg bw  (male rat); R28

2.5 mg/kg bw  (female rat)

Rat LD50 dermal

5027 mg/kg bw (male rabbit)

>2000 mg/kg bw (female rabbit)

Rat LC50 inhalation

0.056 mg/l air, nose only; R26

Skin irritation

Non-irritant (rabbit)

Eye irritation

Transient irritant (rabbit)

Skin sensitisation (test method used and result)

42% oxamyl technical in cyclohexanone and water: non-sensitizing (Buehler)

 

 

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect

Clinical signs of cholinergic perturbation

Lowest relevant oral NOAEL / NOEL

0.93 mg/kg bw/day (equal to 35 ppm; 1-year dog) based on clinical signs of cholinesterase inhibition at 1.46 mg/kg bw/day

Lowest relevant dermal NOAEL / NOEL

50 mg/kg bw/day (21-day rabbit, female) based on decreases in plasma and erythrocyte cholinesterase activity

Lowest relevant inhalation NOAEL / NOEL

No data, not required

 

 

Genotoxicity (Annex IIA, point 5.4)

Genotoxicity

No genotoxic potential1

1 In vitro: bacterial gene mutation test , mammalian cell gene mutation test (CHO/HGPRT), chromosome aberration test; in vivo: mouse micronucleus test. All tests negative.

 

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect

Decreased plasma cholinesterase activity (rat)

Lowest relevant NOAEL / NOEL

1.97 mg/kg bw/day (male rat) based on reduced plasma cholinesterase activity in rat

Carcinogenicity

No evidence of carcinogenic potential

 

 

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction target / critical effect

Reduced pup survival and reduced litter size at the parentally toxic dose of 150 ppm (rat)

Lowest relevant reproductive NOAEL /

25 ppm (1.43 mg/kg bw/day)

Developmental target / critical effect

Decreased foetal body weight (rat)

Lowest relevant developmental NOAEL / NOEL

0.5 mg/kg bw/day for maternal and developmental toxicity

 

 

Neurotoxicity / Delayed neurotoxicity (Annex IIA, point 5.7)

Target / critical effects

No evidence for delayed neurotoxicity

Erythrocyte cholinesterase inhibition and clinical signs of cholinergic perturbation

Acute Neurotoxicity NOAEL

0.1 mg/kg bw/day (rat gavage) based on decreased body weight gain & food consumption; inhibition of plasma, erythrocyte and brain cholinesterase and clinical signs;  FOB and motor activity effects

Subchronic neurotoxicity NOAEL

1.69 mg/kg bw/day (equivalent to 30 ppm; rat 90-day dietary) based on decreased body weight & food consumption; inhibition of plasma, erythrocyte and brain cholinesterase and clinical signs;  FOB and motor activity effects

 

 

Other toxicological studies (Annex IIA, point 5.8)

Acute lethal dose INA-2213

11,000 mg/kg (male rat)

10-dose subacute INA-2213

No NOAEL; histopathological changes, clinical signs and body weight loss at 1000 mg/kg bw/day (male rat)

Oral LD50 INN-79

LD50  = 6675 mg/kg (6370-6990 mg/kg) (male rat)

Acute lethal dose INN-79

450 mg/kg (male rat)

10-dose subacute INN-79

No NOAEL; body weight, organ weight and liver effects at 90 mg/kg bw/day (male rat)

90-day oral INN-79

NOELparental = 50 ppm (4.0 (male) and 4.2 (female) mg/kg bw/day) based on reduced body weight and altered clinical chemistry parameters in both sexes

NOELfertility = 450 ppm (34.3 (male) and 35.7 (female) mg/kg bw/day)

NOELdevelopmental = 150 ppm (11.4 (male) and 12.6 (female) mg/kg bw/day) based on decreased body weight in F1 pups during lactation

Ames test INN-79

Not mutagenic

Oral LD50 IND-2708

LD50  = 3540 mg/kg (male rat)

Neurotoxicity DPX-D1410 NOAEL / NOEL

0.06 mg/kg (Acute human gavage)

 

 

Medical data (Annex IIA, point 5.9)

 

No incidents or accidents during the manufacturing process.  No data relating to exposure of the general public to oxamyl or epidemiological studies.

 

 

Summary (Annex IIA, point 5.10)

 

Value

Study

Safety factor

ADI

0.001 mg/kg bw/day

Acute neurotoxicity study (rat)

100

AOEL

0.001 mg/kg bw/day

Acute neurotoxicity study (rat)

100

ARfD (Acute Reference Dose)

0.001 mg/kg bw/day

Acute neurotoxicity study (rat)

100

 

 

Dermal absorption (Annex IIIA, point 7.3)

 

Dermal absorption of Oxamyl 10GR (Vydate ®) based on in vivo data and correction made with in vitro results is:

0.04%.

 

 


Acceptable exposure scenarios (including method of calculation)

Operator

Estimated exposure scenarios of Oxamyl 10GR (Vydate ®), based on a treated area of 4.6 ha/day:

 

1) Based on US PHED model (5.5 kg a.i./ha)

920% of AOEL, without PPE

92% of AOEL, With RPE* (M/L and Appl.)

 

2) Based on a field study, with PPE

a) rate 1 kg a.i./ha

8% of AOEL geometric mean

22% of AOEL worst case

 

b) with correction factor 5.3 to simulate the rate 4-5.5 kg a.i./ha:

37% of AOEL, geometric mean

118% of AOEL worst case

Workers

Considered to be negligible

Bystanders

Not applicable

* Respiratory Protective Equipment, M/L= Mixing and loading, Appl. = Application

 

 

Classification and proposed labelling (Annex IIA, point 10)

with regard to toxicological data

Classification:          Very toxic by inhalation and if swallowed

Label:

Symbol:                 T+;

Indication of danger: Very Toxic

Risk phrase:          R26/28 Very toxic by inhalation and if swallowed

Safety phrases:     S2, Keep out of the reach of children

                                 S36/37, Wear suitable protective clothing and gloves

                                 S45, In case of accident or if you feel unwell seek medical advice immediately (show the label where possible)

 

Data requirements active substance

No additional data requirements are identified.

 

4.1       Toxicity of the formulated product (IIIA 7.1)

The formulation Vydate 10G needs to be classified as R25 ‘Toxic if swallowed’ based on the acute oral toxicity (LD50 rat 34 mg/kg bw).  

The formulation Vydate 10G does not need to be classified on the basis of its acute dermal toxicity (LD50 rat 5000 mg/kg bw).

The formulation Vydate 10G when tested in milled form has a LC50 of 0,68 mg/L. In principle this should lead to classification as R23 ‘Toxic by inhalation’. R23 is not given since the formulation is a granulate with a respirable fraction less than 1% and therefore does not present a risk at inhalation.

 

The formulation Vydate does not need to be classified for dermal irritation, eye irritation or skin sensitisation (Buehler test).

 

4.1.1    Data requirements formulated product

No additional data requirements are identified

 

4.2       Dermal absorption (IIIA 7.3)

See List of Endpoints. The in vivo test was done with a liquid (SL) formulation and the in vitro tests with Vydate 10G. It can be assumed that dermal absorption from a liquid formulation is higher than for a granular formulation. The value of 0.04% dermal absorption is therefore considered worst case. Vydate 10G is directly applied in granular form. Therefore, a value for a spray dilution is not necessary.

 

4.3       Available toxicological data relating to non-active substances (IIIA 7.4)

Other formulants: no reason for toxicological concern.

 

4.4       Exposure/risk assessments

Application in potplants is in greenhouses.

 

 

Calculation of the AOEL

Since oxamyl is included in Annex I of 91/414/EEC, the semi-chronic EU-AOEL of 0.001 mg/kg bw/day (= 0.07 mg/day for a 70-kg operator), based on the acute neurotoxicity study in the rat is applied (see List of Endpoints).

 

4.4.1    Operator exposure/risk

Exposure to oxamyl during mixing and loading and application is usually estimated with models. For broadcast application of granular formulations like Vydate 10G no EU-accepted models are available. In a previous assessment of Vydate 10G in C-129.3.10/15, January 2003, the operator exposure was based on a field study with Vydate 10G in potatoes in The Netherlands. This study is also used for operator risk assessment in the DAR for oxamyl. In the DAR an estimation for operator exposure based on the US-PHED (Pesticide Handlers Exposure Database) is also included. Only the results with the operator exposure study are given as these data are the most representative for the working practice in The Netherlands.

 

The study involved 10 operators. With this number of operators the highest exposure measured is used for risk assessment. This highest actual exposure with use of PPE (gloves during loading) was 2.35 mg/kg oxamyl for inhalation and 21.21 mg/kg for dermal exposure. Based on the operator exposure study a value of 5 ha treated per working day is assumed instead of the default value of 10 ha/day. The highest dose is 40 kg Vydate 10G/ha, equivalent to 4 kg oxamyl/ha for broadcast application. The dose in potplants is 40 g Vydate 10G/m3 soil, equivalent to 4 g oxamyl/m3 soil.

In the Table below the estimated internal exposure is compared with the systemic AOEL.

 

Table T.1 Internal operator exposure to oxamyl and risk assessment for the use of Vydate 10G

 

Route

Estimated internal exposure a (mg /day)

Systemic

AOEL

(mg/day)

Risk-index b

Mechanical broadcast in strawberries, tree nurseries, floriculture (field and greenhouse) and flowers for seed production

Loading/application

Respiratory

0.047

0.07

0.67

Dermal

0.00017

0.07

<0.01

 

Total

0.047

0.07

0.67

a       External exposure was estimated a field study. Internal exposure was calculated with:

·       biological availability via the dermal route: 0.04% (see 4.2)

·       biological availability via the respiratory route: 100% (worst case)

b       The risk-index is calculated by dividing the internal exposure by the systemic AOEL.

 

The intended use in potplants is mixing of Vydate 10G with soil. This is a highly automated process. The total amount of Vydate 10G used on a working day is much lower than the amount used in field applications. Therefore, exposure of the applicator (loading only) will be much lower than in field applications.

 

4.4.2    Bystander exposure/risk

As Vydate 10G is a low dust granular formulation that is applied by broadcast or in furrow, no drift will occur. Therefore, bystander exposure will be negligible.

 

4.4.3    Worker exposure/risk

Shortly after application it is not necessary to perform any re-entry activities during which intensive contact with the treated crop or soil will occur. Therefore no worker exposure is calculated.

 

 

4.4.4    Re-entry

See 4.4.3 Worker exposure/risk.

 

Overall conclusion of the exposure/risk assessments  of operator, bystander, and worker

The product complies with the Uniform Principles.

 

Operator exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the operator using gloves at loading after dermal and respiratory exposure to oxamyl as a result of the application of Vydate 10G in strawberries, tree nurseries, floriculture, flowers for seed production and potplants.

 

Bystander exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the unprotected bystander after dermal and respiratory exposure to oxamyl as a result of the application of Vydate 10G in strawberries, tree nurseries, floriculture, flowers for seed production and potplants.

 

Worker exposure

Based on the risk assessment, it can be concluded that no adverse health effects are expected for the unprotected worker after dermal and respiratory exposure to oxamyl as a result of the application of Vydate 10G in strawberries, tree nurseries, floriculture, flowers for seed production and potplants.

 

4.5       Appropriate mammalian toxicology and operator exposure endpoints relating to
the product and approved uses

See List of Endpoints.

 

4.6       Data requirements

Based on this evaluation, no additional data requirements are identified.

 

4.7       Combination toxicology

Vydate 10G contains only one active substance and it is not described that it should be used in combination with other formulations.

 

4.8       Mammalian toxicology classification and labelling

 

Proposal for the classification of the active ingredient (symbols and R phrases)
(EU classification)

 

Symbol:

T+

Indication of danger: Very toxic

 

Risk phrases

R26/28

 

Very toxic by inhalation and if swallowed.

* ECB (19th ATP included, updated in 25th ATP) also classified oxamyl with R21 ‘Harmful in contact with skin’. This was based on an old acute dermal toxicity with a LD50 > 1200 mg/kg bw. Based on the EU assessment classification of oxamyl for acute dermal toxicity is not longer necessary.

 

Proposal for the classification and labelling of the formulation concerning health

 

The current classification and labelling (T, R25, S35, S36/37 and S45), which is prepared in conformity with Directive 1999/45/EG, can be maintained.

 

 

5.      Residues

List of Endpoints

The List of Endpoints from the EFSA conclusion on oxamyl d.d. 14 January 2005 is used as the basis for the evaluation of VYDATE.

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered

One acceptable metabolism study in potatoes was provided.

A number of metabolism studies from the 1970’s were presented for a range of crops. These studies were not considered to be acceptable as stand alone metabolism studies. If the GAP for oxamyl is extended then additional metabolism studies will be required.

Rotational crops

Two studies were submitted which between them studied the uptake of oxamyl into beetroot, cabbage, sorghum, barley and lettuce. These studies indicated that only in the case of soil aged for 30 days pre-planting were residues of oxamyl detected in the rotational crops. Both of these studies had applications greater than the recommended potato GAP but it is considered prudent that a label recommendation should be in place, which recommends that rotational crops should not be planted within 120 days of an oxamyl application to soil. This is required to minimize the possibility of residues being detected which will exceed the limit of detection for oxamyl which is the likely MRL.

Plant residue definition for monitoring

Parent oxamyl.

Plant residue definition for risk assessment

As for monitoring.

Conversion factor (monitoring to risk assessment)

None.

 

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

Animals covered

Goat and hens

Animal residue definition for monitoring

None required

Animal residue definition for risk assessment

None required

Conversion factor (monitoring to risk assessment)

None

Metabolism in rat and ruminant similar (yes/no)

The metabolism is similar but faster

Fat soluble residue: (yes/no)

No

 

 

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

 

 

If crops are planted within 120 days of oxamyl application then residues of oxamyl may be detected in the roots and aerial parts of these crops

 

 

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 introduction)

 

 

Residues of oxamyl are stable in a range of fruit and vegetables when they are stored in a freezer for up to 1 year

 

 

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

Intakes by livestock ł 0.1 mg/kg diet/day:

Ruminant:

Poultry:

Pig:

An animal feeding study was not required on the basis of the diet of food animals. Metabolism studies in the goat and in hens indicate that the only identifiable residue possible in the goat and hen is thiocyanate. No residues of oxamyl or its oxime will be detected in these animals.

Muscle

 

 

 

Liver

 

 

 

Kidney

 

 

 

Fat

 

 

 

Milk

 

 

 

Eggs

 

 

 

 

 

Comments on/additions to List of Endpoints

 

5.1       Summary of residue data

 

5.1.1    Metabolism in plants

The behaviour of oxamyl was investigated in the crop group root and tuber vegetables (potato) for Annex I listing.

Furthermore, metabolism was investigated via foliage, fruit or soil application in potato, peanut, tobacco, tomato, orange and apple as was summarised by the JMPR (2002). Overall, oxamyl is rapidly metabolised into metabolites not containing an intact carbamate structure.

The studies available cover the use in strawberry regeneration plants.

 

5.1.2    Metabolism in livestock

Residues at the time of harvest are < LOQ (0.01* mg/kg) in potato, beet, carrot and strawberry. Metabolism in livestock need not to be investigated for the current authorisation request, as strawberries are not used as livestock feed.

 

5.1.3    Residue definition (plant and animal)

Plants

The metabolites of oxamyl found in plants do not contain an intact carbamate structure. The only toxicological relevant residue in the crops investigated is oxamyl. The residue definition for plants is oxamyl (monitoring as well as risk assessment).

 

Animals

No residue definition required.

 

5.1.4    Stability of residues

Residues have been found to be stable for at least 1 year at –18°C in watery matrix, thus covering potato, beet, carrot and Brussels sprouts.

 

5.1.5    Residue data

Residue data have been evaluated before in the DAR (potato) and nationally (carrot, beet and brussels sprouts). For all four crops, a zero residue situation was observed.

 

For strawberry, application is requested only for regeneration plants. Therefore, the period between application and fruit production is > 6 months. From metabolism data and the trials in potato, beet and carrot as well as the short half live time of oxamyl in soil, it is predicted that no residues will be present in strawberry fruits. No further residue data are required.

 

5.1.7    Residues from livestock feeding studies

Residues at the time of harvest are < LOQ (0.01* mg/kg) in potato, beets, carrot, brussels sprouts and strawberry). Metabolism in livestock need not be investigated for the current authorisation request.

 

5.1.8    Processing factors

Residues at the time of harvest are < LOQ (0.01* mg/kg) in potato, beet, carrot, brussels sprouts and strawberry). Processing data are not required for the current authorisation request.

 

5.1.9    Calculation of the ADI and the ARfD

The ADI is set to 0.001 mg/kg bw/day based on the NOAEL of 0.1 mg/kg bw/day in the acute neurotoxicity study in the rat, with a safety factor of 100.

 

The ARfD is set to 0.001 mg/kg bw/day based on the NOAEL of 0.1 mg/kg bw/day in the acute neurotoxicity study in the rat, with a safety factor of 100.

 

5.2       Maximum Residue Levels

Maximum residue levels have been set in directive 2006/59/EC, which goes into force at 30 December 2007. MRLs for root/tuber vegetables, for brassicas and for small fruits and berries are set at 0.01* mg/kg.

The product complies with the MRL Directives.

Notification of the MRL is not necessary.

 

5.3       Consumer risk assessment

Risk assessment for chronic exposure through diet

Based on the proposed residue tolerances, a calculation of the National Theoretical Maximum Daily Intake (NTMDI) was carried out using the National Dutch diet and the provisional harmonised EU-MRLs (including the use on potato, carrot, beet, Brussels sprouts and strawberry). Calculation of the NTMDI shows that 0.4% and 1.0% of the ADI is used for the general population and for children, respectively.

 

Risk assessment for acute exposure through diet

A calculation of the National Estimated Short Term Intake (NESTI) was carried out using the National Dutch diet mentioned provisional STMRs and HRs. Calculation of the NESTI shows that 27% and 90% of the ARfD is used for the general population and for children, respectively, both for the product potatoes.

 

Conclusion

Based on the assessment for residues, no risk for the consumer due to the exposure to oxamyl is currently expected when  VYDATE 10G is used according to the intended use.

The product complies with the Uniform Principles.

 

5.4       Data requirements

None.

 

 

6.                  Environmental fate and behaviour

 Risk assessment is done in accordance with HTB 1.0 for products based on
- active substances which have already been placed on Annex I of directive 91/414/EEC;

- “new”active substances.

For other plant protection products, HTB 0.2 applies.

This means that for the current application of Vydate 10G, risk assessmentis done in accordance with HTB 1.0.

 

The underlying risk assessment is based on the final List of Endpoints for oxamyl, taken from the EFSA-conclusion (finalised 14 January 2005), on the previous risk assessment for Vydate10G as laid down in C-138.3.3 (CTB decision 10-08-2003) and (if relevant for the risk assessment) data submitted for this and previous national authorisations (added to the List of Endpoints in italics).

 

List of Endpoints Fate/behaviour 

 


Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1)

Mineralisation after 100 days

 

CO2 maximum levels = 25.6-108.5% (at final sampling timepoints, 31-179 days) (n = 6 incubations; 5 soils tested – 3 soils incubated at 20 °C, 1 soil incubated at 10 °C and 20 °C, 1 soil incubated at 25 °C)

Non-extractable residues after 100 days

 

NER maximum levels = 17.7-26.4% (time of maximum occurrence = 21-179 days) (n = 6 incubations; 5 soils tested – 3 soils incubated at 20 °C, 1 soil incubated at 10 °C and 20 °C, 1 soil incubated at 25 °C)

Relevant metabolites - name and/or code, % of applied (range and maximum)

 

IN-A2213 and IN-D2708 were major degradation products in soil;

IN-A2213 maximum levels = 7.6-51.0% (time of maximum occurrence = 1-60 days) (n = 6 incubations; 5 soils tested – 3 soils incubated at 20 °C, 1 soil incubated at 10 °C and 20 °C, 1 soil incubated at 25 °C);

IN-D2708 maximum levels = 20.3-39.5% (time of maximum occurrence = 10-90 days) (n = 5 incubations; 4 soils tested – 2 soils incubated at 20 °C, 1 soil incubated at 10 °C and 20 °C, 1 soil incubated at 25 °C)

[In a fifth soil (Drummer #6), which may have had a stressed microbial population due to its strongly acidic nature, IN-D2708 was not detected]

 

 

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation

 

n = 1 soil (11 days aerobic incubation followed by 60 days anaerobic incubation)

Mineralisation: CO2 = 12.0% after 60 days

Non-extractable residues: 18.4% after 60 days

 

Metabolites (soil and flood water extraction):

IN-A2213 maximum = 69.5% at day 20

IN-D2708 maximum = 23.1% at day 32

Soil photolysis

 

n = 2 soils

Mineralisation: CO2 = 7.9-27.4% after 20 days (irradiated samples), CO2 = 37.5-42.9% after 20 days (non-irradiated samples)

Non-extractable residues: 45.4-62.1% after 20 days (irradiated samples), 5.3-7.9% after 20 days (non-irradiated samples)

 

Metabolites:

IN-A2213 – maximum = 12.2-13.4%, at 7-12 days (irradiated samples), maximum = 11.3-18.1%, at 7-20 days (non-irradiated samples)

IN-N0079 – maximum = 3.8-25.0%, at day 7 (irradiated samples), maximum = 0.9-18.3%, at 7-20 days (non-irradiated samples) [Not considered to be a photolysis metabolite. Produced by Fe II catalysis]

Uncharacterised polar fraction – maximum = 21.1-23.8%, at 12-20 days (irradiated samples), maximum = 6.5-11.0% at 7-20 days (non-irradiated samples)

[The oxamyl content of the radiolabelled starting material was only 78%.  Other components were IN-A2213 (9.0%) and a polar fraction (10.9%).]

 

 

 

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Method of calculation

Laboratory:

Aerobic studies on parent – non-linear simple first order regression of parent and metabolite(s) in series, simultaneous fit (ModelManager®, version 1.1)

Aerobic studies on metabolites – linear simple first order regression

Anaerobic study – linear simple first order regression

Soil photolysis study – simple first order kinetics, accounting for the effect of non-photolytic degradation

Saturated zone degradation studies – linear simple first order regression

 

Field studies:

Non-linear simple first order regression of parent and two metabolites in series, simultaneous fit (ModelManager®, version 1.1)

Laboratory studies (range or median, with n value, with r2 value)

Aerobic studies:

Oxamyl DT50lab (20-25 °C, aerobic): 3.0, 4.1, 7.9, 11.5 days (r2 = 0.973-0.988), mean = 6.6 days

IN-A2213 DT50lab (20-25 °C, aerobic): 1.7, 1.8, 5.9, 6.4 days (derived from studies on oxamyl – r2 = 0.973-0.988), mean = 4 days

[In one additional soil (Drummer #6), which was strongly acidic (pH of 4.8) and may have had a stressed microbial population, DT50lab values (20 °C, aerobic) were 112 days for oxamyl and 17.5 days for IN-A2213 (r2 = 0.998).]

IN-D2708 DT50lab (20-25 °C, aerobic – derived values): 3.4, 3.6, 5.0, 7.6 days (r2 = 0.973-0.988), mean = 4.9 days; (20 °C, aerobic – direct experimental values): 3.9, 4.8, 6.1 days (r2 = 0.828-0.887), mean = 4.9 days

[Overall mean = 4.9 days (n = 7)]

IN-N0079 DT50lab (23 °C, aerobic – direct experimental values): 4, 25, 41 minutes (r2 = 0.976-0.998), mean = 23 minutes

Degradation data under acidic soils is required.

 

Oxamyl DT90lab (20-25 °C, aerobic): 9.9-38.2 days (n = 4 soils, r2 = 0.973-0.988), mean = 22.0 days

IN-A2213 DT90lab (20-25 °C, aerobic): 5.7-21.3 days (derived from studies on oxamyl – n = 4 soils, r2 = 0.973-0.988), mean = 13.2 days

[In one additional soil (Drummer #6), which was strongly acidic (pH of 4.8) and may have had a stressed microbial population, and was not representative of a conventional European agricultural soil, DT90lab values (20 °C, aerobic) were 373 days for oxamyl and 58.2 days for IN-A2213 (r2 = 0.998).]

IN-D2708 DT90lab (20-25 °C, aerobic – derived values): 11.2-25.4 days (n = 4 soils, r2 = 0.973-0.988), mean = 16.3 days; (20 °C, aerobic – direct experimental values): 12.8-20.2 days (n = 3 soils, r2 = 0.828-0.887), mean = 16.3 days

[Overall mean = 16.3 days (n = 7)]

IN-N0079 DT90lab (23 °C, aerobic – direct experimental values): 13-135 minutes (n = 3 soils, r2 = 0.976‑0.998), mean = 77 minutes

 

(10 °C, aerobic): laboratory values

Oxamyl DT50lab (10 °C, aerobic): 16.4 days (n = 1 soil, r2 = 0.992)

IN-A2213 DT50lab (10 °C, aerobic): 21.5 days (n = 1 soil, r2 = 0.992)

IN-D2708 DT50lab (10 °C, aerobic): 65.9 days (n 1 soil, r2 = 0.992)

Oxamyl DT90lab (10 °C, aerobic): 54.4 days (n = 1 soil, r2 = 0.992)

IN-A2213 DT90lab (10 °C, aerobic): 71.3 days (n = 1 soil, r2 = 0.992)

IN-D2708 DT90lab (10 °C, aerobic): 219 days (n = 1 soil, r2 = 0.992)

 

Arrhenius analysis of nine additional data points from two studies published in the scientific literature gives Q10 (10-20 °C) values for oxamyl of 1.99, 2.66 and 3.17 (refer to ‘Environmental Fate and Behaviour’ addendum of June 2004).  This suggests that a Q10 (10-20 °C) value in the approximate range of 2 to 3 may be more representative for oxamyl than the Q10 (10-20 °C) value of 5.5 reported in the original monograph (which was only based on two data points).

 

Anaerobic soil:

Oxamyl DT50lab (25 °C, anaerobic): 6 days (n = 1 soil, r2 = 0.945)

IN-A2213 DT50lab (25 °C, anaerobic): 24 days (n = 1 soil, r2 = 0.968)

IN-D2708 DT50lab (25 °C, anaerobic): 20 days in 1 soil, r2 = 0.741)

 

Oxamyl DT90lab (25 °C, anaerobic): 19 days (n = 1 soil, r2 = 0.945)

IN-A2213 DT90lab (25 °C, anaerobic): 81 days (n = 1 soil, r2 = 0.968)

IN-D2708 DT90lab (25 °C, anaerobic): 68 days (n = 1 soil, r2 = 0.741)

 

[Rates are whole-system values (soil and flood water combined).]

 

Soil photolysis:

Oxamyl DT50lab (irradiated samples): 1.7-3.1 days (continuous irradiation) (n = 2 soils, r2 = 0.88-0.95)

Oxamyl DT50lab (dark control samples): 17.3-17.9 days (n = 2 soils, r2 = 0.43-0.77)

Oxamyl DT50lab (corrected): 1.9-3.8 days (n = 2 soils, r2: not applicable)

 

Degradation in the saturated zone (10 °C):

Oxamyl DT50lab (aerobic): 37->120 days (n = 2 subsoils, r2 = 0.76 for one subsoil and not calculated for the other subsoil)

Oxamyl DT50lab (anaerobic): 0.9-1.7 hours (n = 2 subsoils, r2 = 0.95 for one subsoil and not calculated for the other subsoil)

 

IN-A2213 DT50lab (aerobic): 239-630 days (n = 2 subsoils, r2 = 0.78-0.83)

IN-A2213 DT50lab (anaerobic): 158-231 days (n = 2 subsoils, r2 = 0.81-0.93)

 

IN-D2708 DT50lab (aerobic): 11-859 days (n = 2 subsoils, r2 = 0.53-0.83)

IN-D2708 DT50lab (anaerobic): 1209-1355 days (n = 2 subsoils; r2 = 0.29-0.42)

 

IN-N0079 DT50lab (aerobic): 1.1-12.4 days (n = 2 subsoils, r2 = 0.72-1.00)

IN-N0079 DT50lab (anaerobic): 10.7-45.3 days (n = 4 subsoils, r2 = 0.76-0.89), mean = 29 days

 

 

Field studies (state location, range or median with n value)

DT50f:

UK, England, Lincolnshire, Spalding (bare soil):

Oxamyl DT50field: 11.0 days (n = 1, r2 = 0.969)

(DT50field standardised to 20 °C = 5.8 d)

 

IN-A2213 DT50field: 4.6 days (n = 1, r2 = 0.969)

IN-D2708 DT50field: 3.4 days (n = 1, r2 = 0.969)

 

The Netherlands, Limburg, Ottersum (bare soil):

Oxamyl DT50field: 9.3 days (n = 1, r2 = 0.979)

(DT50field standardised to 20 °C = 6.0 d)

 

IN-A2213 DT50field: 1.7 days (n = 1, r2 = 0.979)

IN-D2708 DT50field: 6.7 days (n = 1, r2 = 0.979)

 

DT90f:

UK, England, Lincolnshire, Spalding (bare soil):

Oxamyl DT90field: 36.0 days (n = 1, r2 = 0.969)

IN-A2213 DT90field: 14.9 days (n = 1, r2 = 0.969)

IN-D2708 DT90field: 11.4 days (n = 1, r2 = 0.969)

 

The Netherlands, Limburg, Ottersum (bare soil):

Oxamyl DT90field: 30.7 days (n = 1, r2 = 0.979)

IN-A2213 DT90field: 5.63 days (n = 1, r2 = 0.979)

IN-D2708 DT90field: 22.2 days (n = 1, r2 = 0.979)

Soil accumulation and plateau concentration

Not applicable

 

 

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Kf/Koc

 

Kd

 

pH dependence (yes/no) (if yes type of dependence)

Oxamyl:

Kf: 0.05-0.41 mL/g (mean = 0.18 mL/g, 4 soils)
Kfoc: 4-37 mL/g (mean = 16 mL/g, 4 soils)
1/n: 0.946-1.27 (mean = 1.07, 4 soils)
Kd: 0.09-0.44 mL/g (mean = 0.19 mL/g, 5 soils)
Koc: 8-39 mL/g (mean = 17 mL/g, 5 soils) (mean KOM = 10 mL/g)

 

[Kfoc = Kf normalized to organic carbon content, Koc = Kd normalized to organic carbon content]

 

IN-A2213:

Kf: 0.048-0.20 mL/g (mean = 0.11 mL/g, 5 soils)
Kfoc: 4-10 mL/g (mean = 7 mL/g, 5 soils)
1/n: 0.87-1.24 (mean = 1.03, 5 soils)
Kd: 0.051-0.20 mL/g (mean = 0.11 mL/g, 5 soils)
Koc: 4-11 mL/g (mean = 7 mL/g, 5 soils)

(mean KOM = 4.1 mL/g)

 

IN-D2708:

Kf: 0.05-0.39 mL/g (mean = 0.17 mL/g, 5 soils)
Kfoc: 6-14 mL/g (mean = 10 mL/g, 5 soils)
1/n: 0.532-0.762 (mean = 0.67, 5 soils)
Kd: 0.03-0.31 mL/g (mean = 0.11 mL/g, 5 soils)
Koc: 2-10 mL/g (mean = 6 mL/g, 5 soils)

(mean KOM = 3.5 mL/g)

 

IN-N0079 (unstable in the presence of soil):

Kf: not calculated
Kfoc: not calculated
1/n: not calculated
Kd: 0.03-0.31 mL/g (mean = 0.11 mL/g, 5 soils)
Koc: 2-25 mL/g (mean = 8 mL/g, 5 soils)

(mean KOM = 4.7 mL/g)

No pH dependence for oxamyl or its metabolites.

 

 

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching

Not required

Aged residues leaching

Not required

Lysimeter/ field leaching studies

Not required *

* In previous assessments of oxamyl for national authorisation, three lysimeterstudies in the USA were included in the profile. In the risk assessment for leaching however, it was concluded that these studies were not useful and reliable enough to assess the risk for leaching to groundwater in the Netherlands. Therefore these lysimeterstudies are not added to this List of Endpoints.

 

Monitoring data ground water

From a study described by RIZA (Watersysteemverkenningen Carbamaten, 1993) it appears that monitoring for oxamyl in ground water was performed only sporadically. A total of 5 observations are known; no measurements were above the detection limit of 0.02 µg/L.

 

Field monitoring study (evaluated by NOTOX d.d. April 2007)

 

Reference

:

Thompson H.M., 2005 (IIIA 9.2 and IIIA 10.1.7)

 

Guideline

:

no guidelines applicable

Type of study

:

Field monitoring: field dissipation & effects on birds

 

Application rate

:

37-55 kg product/ha (3.7-5.5 kg a.s./ha)

Year of execution

:

2005

 

Number of treatments

:

1, pre-plant, broadcast incorporated.

Test substance

:

Vydate 10G, batch nr not reported, average dry granule weight 0.26-0.30 mg, 97% in size range 0.25-0.85 mm, blue-green appearance.

 

Interval

:

not applicable

A.s. content

 

10% nominal oxamyl

 

Treated area

:

0.4-14.3 ha per field

Test site

:

Potato growing fields in UK

 

Conclusions

:

see study conclusion

GLP statement

:

No

 

Acceptability

:

acceptable

 

Granule count data for the main field (number of granules on the surface/0.25 m2)

Field number

minimum count

maximum count

mean count

median count

90th percentile

95th percentile

1

0

22

5.9

6

11.3

14.4

2

0

1

0.1

0

0.1

1.0

3

0

13

2.3

1

5.2

7.3

4

0

14

1.2

0

2.1

3.6

5

0

13

3.5

2

8.2

10.2

6

0

16

6.7

5.5

14.1

15.1

7

0

4

0.9

0

2.2

4.0

13

0

11

4.7

3.5

10.1

11.0

14

0

3

0.4

0

1.0

1.1

15

0

21

1.8

1

2.1

3.9

17

0

6

1.5

1

3.1

4.1

18

0

14

5.5

4.5

12.2

14.0

19

0

20

9.5

8.5

18.1

19.1

20

0

5

1.1

0

3.2

5.0

21

0

18

5.1

4.5

10.4

14.2

22

1

15

4.8

4

9.0

9.3

23

0

4

1.5

1

3.1

4.0

24

0

5

1.3

1

3.0

3.1

25

0

2

0.2

0

1.0

1.1

27

0

34

11.4

9

22.3

25.5

28

1

24

11.6

10

21.0

21.2

30

0

11

5.1

4.5

10.0

10.1

31

1

41

18.6

13.5

38.0

38.2

33

0

34

14.8

14

23.2

25.5

34

0

4

0.9

0

3.0

3.1

35

0

18

3.3

2

6.0

6.6

36

26

140

71.0

65

98.8

107.7

39

2

14

6.4

6

10.2

12.1

41

0

4

1.6

1

4.0

4.0

all fields

0

140

7.0

2

16.0

25.1

 

Granule count data for cultivated headlands (number of granules on the surface/0.25 m2)

Field number

minimum count

maximum count

mean count

median count

90th percentile

95th percentile

18

0

8

0.6

0

0.4

4.2

21

0

15

5.3

5

14.0

14.1

25

0

2

0.4

0

1.1

2.0

27

0

36

9.4

7

13.6

19.9

34

0

6

0.4

0

1.0

1.3

36

0

110

33.7

28

78.2

98.6

all fields

0

110

8.3

0.5

17.2

50.7

 

Granule count data for uncultivated headlands (number of granules on the surface

/0.25 m2)

Field number

minimum count

maximum count

mean count

median count

90th percentile

95th percentile

1

0

1

0.1

0

0.0

0.1

2

0

2

0.2

0

0.1

1.1

3

0

5

0.8

0.5

1.1

2.2

5

0

16

1.4

0

4.2

6.5

6

0

43

5.8

2

18.5

24.0

7

0

6

0.6

0

2.0

2.2

13

0

1700

90.1

0.5

22.5

119.2

14

0

89

7.5

0

16.5

41.5

15

0

7

1.0

0

4.2

6.1

17

0

47

2.8

0

2.0

4.3

20

0

500

28.8

0

18.0

67.8

22

0

66

8.5

3.5

20.5

27.1

23

0

3

0.25

0

1

1.1

24

0

210

27.7

1

137.0

157.8

28

0

900

55.8

1.5

46.4

178.0

30

0

132

13.3

0

21.5

116.8

31

0

25

3.0

1

7.2

9.7

33

0

59

5.8

1

15.2

19.1

35

0

650

41.9

0

19.8

203.5

39

0

3

0.4

0

1.1

2.1

41

0

140

7.6

0

1.0

14.9

all fields

0

1700

14.5

0

9.3

30.0

 

Granule count data for spills (number of granules on the surface/0.25 m2)

Field number

no of spills

min size (cm2)

max size (cm2)

min count

max count

1

5

280000

280000

0

208

2

1

375

375

-

-

5

1

2000

2000

1000

1000

13

4

160000

160000

800

6000

17

2

-

-

328

926

19

4

2000

80000

900

9000

20

6

10000

80000

150

1000

21

8

5000

15000

108

900

22

4

30000

80000

700

1000

23

1

-

-

1000

1000

27

2

-

-

120

200

28

6

2500

10000

120

900

30

5

250

500

110

370

35

7

2500

120000

270

290

36

5

15000

15000

170

555

39

1

2500

2500

220

220

41

3

2500

2500

160

200

 

Conclusions

A monitoring study was performed on 30 sites in the UK representative for the potato growing area. Vydate 10G (granules, 10% oxamyl) was broadcast incorporated between half March and half May 2005 at rates between 37-55 kg product/ha (3.7-5.5 kg a.i/ha). Application/incorporation was achieved by a variety of techniques which can be considered representative for normal agricultural practice.

Surface exposed granule counts were made on 29 sites in the main field and headlands (row ends, turning areas). Mean surface exposed granule counts (per 0.25 m2) were 7.0, 14.5 and 8.3 for the main field, uncultivated headlands and cultivated headlands, respectively. All fields median values were 2, 0 and 0.5; 90th percentiles 16, 9.3 and 17.2 and 95th percentiles 25.1, 30.0 and 50.7 respectively. Spills occurred on 17 sites (number of spills between 1 and 8, maximum spill per site 200-9000 granules/0.25 m2) and were caused at row ends and headlands (due to incomplete incorporation, failure to stop granule flow, or replacement of containers). Carcass searched performed on 23 sites 24-48 hours after application did not show any wildlife poisoning related to the use of Vydate 10G.

Bird surveys on 23 sites indicated the most prevalent species on the main field was the pied wagtail, followed by crow and rook, black-headed gull, woodpigeon, pheasant, jackdaw, red-legged partridge and skylark. Other observed species were seen on at most 2 fields. The most abundant species was the black-headed gull, followed by the pied wagtail, rook, crow, linnet and common gull. Other species were observed at Ł25 individuals. On the field margins, the most prevalent species was the chaffinch, followed by the robin, blackbird, wren, woodpigeon, blue tit, great tit, yellowhammer, greenfinch, pied wagtail and dunnock. Other observed species were seen on at most 4 fields. The most abundant species was the chaffinch, followed by the fieldfare, woodpigeon, robin, blue tit and greenfinch. Other species were observed at Ł19 individuals.

Oxamyl dissipation from granules (studies on 10 sites) ranged from “no dissipation” to a half-life of 0.455 hours and was primarily governed by rainfall events immediately after application. It was estimated that a cumulative rainfall of 0.35 mm would result in 50% dissipation and 90% dissipation will be reached after 1.2 mm of rainfall.

 

 

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolysis of active substance and relevant metabolites (DT50) (state pH and temperature)

pH 4 and pH 5

Oxamyl DT50 (pH 5, 25 °C): stable (>>31 day)

IN-A2213 DT50 (pH 4, 20 °C): stable (1386 days)

IN-D2708 DT50 (pH 4, 20 °C): stable (386 days)

IN-N0079 DT50 (pH 4, 20 °C): stable (990 days)

IN-T2921 DT50 (pH 4, 20 °C): stable (>1000 days)

 

 

pH 7

Oxamyl DT50 (25 °C): 8 days (first order, r2 = 0.985) [IN-A2213 = 93.2%, at day 30]

IN-A2213 DT50 (20 °C): stable (770 days)

IN-D2708 DT50 (20 °C): stable (981 days)

IN-N0079 DT50 (20 °C): 136 days (first order,
r2 = 0.96) [IN-T2921 = 1.41%, at day 7;
IN-D2708 = 14.17%, at day 30]

IN-T2921 DT50 (20 °C): stable (>1000 days)

 

 

pH 9

Oxamyl DT50 (25 °C): 3 hours (first order, r2 = 0.898) [IN-A2213 = 83.3% after 7 hours and 105.6% by day 15]

IN-A2213 DT50 (20 °C): stable (462 days)

IN-D2708 DT50 (20 °C): stable (8556 days)

IN-N0079 DT50 (20 °C): 3 days (first order,
r2 = 0.97) [IN-T2921 = 18.76%, at day 12;
IN-D2708 = 78.73%, at day 12]

IN-T2921 DT50 (20 °C): stable (337 days)

Photolytic degradation of active substance and relevant metabolites

Oxamyl:

DT50 (pH 5, 25 °C) = 7.4 days continuous irradiation (first order, r2 = 0.961), with IN-A2213 as the major degradation product (75.3%, at day 16).  IN-A2213 stable to further photolysis.  [Irradiation with artificial light, stated to be equivalent to summer sunlight in Delaware, USA.]

Quantum efficiency in water: 0.01870 (calculated using GCSOLAR photolysis model)

Theoretical maximum DT50 in the top layer of aqueous systems (for 30° N, 40° N and 50° N and all seasons): ranging from 6.6 days at 30° N in summer to 27.0 days at 50° N in winter (GCSOLAR – first order values)

 

IN-A2213:

molar absorptivity (ε) at 290 nm: >10 L/mol·cm (45.2 at pH <2, 56.9 at pH 7, 1110 at pH >10) [photolytic stability demonstrated in oxamyl photolysis study]

IN-D2708:

molar absorptivity (ε) at 290 nm: <10 L/mol·cm (2.31 at pH <2, 1.01 at pH 7, 0.375 at pH >10)

IN-N0079:

molar absorptivity (ε) at 290 nm: <10 L/mol·cm (3.28 at pH <2, 5.30 at pH 7, 0.383 at pH >10)

IN-T2921:

molar absorptivity (ε) at 290 nm: <10 L/mol·cm (6.29 at pH <2, 6.03 at pH 7, 2.11 at pH >10)

Readily biodegradable (yes/no)

No [Mean cumulative CO2 production by oxamyl test mixtures reached 11% of the theoretical maximum by day 23 and 19% by the end of the test on day 29.]

Degradation in     - DT50 water

water/sediment    - DT90 water

 

                            - DT50 whole system

                            - DT90 whole system

 

Water phase:

DT50 / DT90 values were not calculated.

Whole system:

[Two different methods used for oxamyl.]

Oxamyl DT50 = 0.4-1.0 days, oxamyl DT90 = 2.8-7.8 days (non-linear multi-compartment fit, n = 2, r2 = 0.920-0.993)

Oxamyl DT50 = 0.7-1.1 days, oxamyl DT90 = 2.4-3.6 days (non-linear first order fit, n = 2, r2 = 0.972-0.990)

IN-A2213 DT50 = 11.4-16.3 days, IN-A2213 DT90 = 37.9-54.1 days (linear first order fit, n = 2, r2 = 0.891-0.930)

IN-D2708 DT50 = 12.2-169 days, IN-D2708 DT90 = 40.5-562 days (linear first order fit, n = 2, r2 = 0.858-0.957)

IN-N0079 DT50 = 4.3-13.2 days, IN-N0079 DT90 = 14.3-43.9 days (linear first order fit, n = 2, r2 = 0.712-0.999)

IN-T2921 DT50 = 2.3-34.5 days, IN-T2921 DT90 = 7.8-115 days (linear first order fit, n = 2, r2: not applicable – only two data points for each fit)

[Due to limited partitioning into sediment, whole-system rates essentially represent the degradation rates in the water phase.  It was not possible to determine degradation rates for the sediment phase.]

 

 

Mineralisation

CO2 = 27.9-60.9% (at 100 days, study end, n = 2)

Non-extractable residues

Non-extractable residues = 9-18% (at 100 days, study end, n = 2)

Distribution in water / sediment systems (active substance)

Water phase:

Oxamyl = 95.8-97.2% (day 0), 36.8-43.1% (day 1) and not detected by day 30 (n = 2 systems)

 

Sediment phase:

Oxamyl = <0.1-0.3% (day 1, n = 2), 1.2% (day 61, n = 1) and otherwise not detected

 

[Dosing method – application to water, no mixing]

Distribution in water / sediment systems (metabolites)

IN-A2213:

Stream system – maximum level = 48.8% in water (day 2), 4.4% in sediment (day 2)

Pond system – maximum level = 25.3% in water (day 2), 2.1% in sediment (day 1)

 

IN-D2708:

Stream system – maximum level = 66.8% in water (day 30), 10.4% in sediment (day 30)

Pond system – maximum level = 64.2% in water (day 30), 12.1% in sediment (day 61)

 

IN-N0079:

Stream system – maximum level = 11.3% in water (day 7), 0.7% in sediment (day 7)

Pond system – maximum level = 52.9% in water (day 2), 3.7% in sediment (day 7)

 

IN-T2921:

Stream system – maximum level = 8.6% in water (day 14), 0.4% in sediment (day 14)

Pond system – maximum level = 11.4% in water (day 14), 0.4% in sediment (day 14)

 

IN-L2953:

Stream system – maximum level = 1.8% in water (day 100), 0.2% in sediment (day 7, day 14)

Pond system – maximum level = 3.8% in water (day 7), 0.1% in sediment (day 7, day 14, day 100)

 

PROD1 (unidentified degradate):

Stream system – maximum level = 0.3% in sediment (day 7), not detected in water

Pond system – maximum level = 0.8% in sediment (day 14), not detected in water

 

[Dosing method – application to water, no mixing]

 

Monitoring data surface water

In the table below, surface water monitoring data from a study described by RIZA are reported: (Watersysteemverkenningen Carbamaten, 1993):

 

Oxamyl monitoring data in surface water

Location and year

Detection limit

o/n#

Mean conc.

Max. conc.

 

[mg/L]

 

[mg/L]

[mg/L]

Bommelerwaard

0,5

1/8

1,10

1,10

Rijnland

0,05

15/65

0,43

1,5

Westland

0,03

2/12

0,25

0,3

Vlotwatering

-

10/10

0,42

0,52

#number of observations above detection limit (o)/total number of observations (n).

 

Observations were mainly done in locations with glasshouse uses. Further it is noted that oxamyl was also detected in the Rhine and Maas rivers. In general these observations were confirmed in the CIW/CUWVO (1999) report on 1992-1996.

 

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air

 

Not determined – no data requested

Quantum yield of direct phototransformation

 

Not determined in air (0.01870 in water)

Photochemical oxidative degradation in air

 

DT50 = 5.68 hours (Atkinson method)

Volatilisation

 

from plant surfaces: not applicable (oxamyl is applied as a soil-incorporated granule)

 

from soil: volatilisation loss of oxamyl estimated to be <0.0005% of the applied amount within 24 hours after treatment (Dow method)

 

Definition of the Residue (Annex IIA, point 7.3)

Relevant to the environment

 

Soil:

Oxamyl only (IN-A2213, IN-D2708, IN-N0079 and IN-T2921 adjudged not to be relevant in soil)

 

Water:

Oxamyl only (IN-A2213, IN-D2708, IN-N0079 and IN-T2921 adjudged not to be relevant in water)

 

Air:

No residue

 

 

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)

 

Relevant European data not available

Surface water (indicate location and type of study)

Relevant European data not available

Ground water (indicate location and type of study)

 

UK (Anglia and Wales) – groundwater monitoring data from the UK Environment Agency database for 1992-1997

Wales: 26 samples analysed – oxamyl <0.1 μg/L in all cases

Anglia: 169 samples analysed – oxamyl >0.1 μg/L in 3 cases (0.18, 0.329 and 0.541 μg/L)

Air (indicate location and type of study)

 

Not available

 

 

Classification and proposed labelling (Annex IIA, point 10)

with regard to fate and behaviour data

 

No classification necessary

 

6.1       Fate and behaviour in soil

 

6.1.1    Persistence in soil

The Board for the authorization of pesticides in the Netherlands (Ctgb) has to evaluate persistence in compliance with the INS[1] method. This is done with a new ‘decision tree’, which has been laid down in the RIVM[2] report 601506008/2005: ‘Persistence of plant protection products in soil; a proposal for risk assessment. Persistence has to be evaluated by the Ctgb on the basis of this decision tree.

However, this decision tree is currently still under development, which means that it cannot be put into practice immediately. The new procedure for the assessment of persistence of plant protection products for authorisation will be implemented in the near future.

 

As long as the mentioned RIVM report has not been laid down by the competent authorities, the Ctgb will fall back on the tried and tested method which has hitherto been in use for evaluating applications for the authorisation of plant protection products.

 

If for the evaluation of the product a higher tier risk assessment is necessary, a standard is to be set according to the MPC-INS method. This method is the same as the method described in the TGD to set a predicted no-effect concentration (PNEC).

 

For the current application this means the following:

 

Oxamyl

The following laboratory DT50 values (20-25 °C, aerobic) are available for the active substance oxamyl: 3.0, 4.1, 7.9, 11.5 days (mean = 6.6 days). The mean DT50-value of the a.s. can thus be established to be <90 days. This is confirmed by the available DT50-values from two field studies (UK and NL), which were resp. 11.0 and 9.3 days. Furthermore it can be excluded that after 100 days there will be more than 70% of the initial dose present as bound (non-extractable) residues together with the formation of less than 5% of the initial dose as CO2.

 

IN-A2213

For the major soil metabolite IN-A2213 the following DT50-values are available: 1.7, 1.8, 5.9, 6.4 days (derived from aerobic laboratory studies on oxamyl, mean = 4 days). The mean DT50-value of IN-A2213 can thus be established to be <90 days. This is confirmed by the available DT50-values from two field studies (UK and NL), which were resp. 4.6 and 1.7 days.

 

IN-D2708

For the major soil metabolite IN-D2708 the following DT50-values are available: 3.4, 3.6, 5.0, 7.6 days (derived from aerobic laboratory studies on oxamyl, mean = 4.9 days) and 3.9, 4.8, 6.1 days (20 °C, aerobic – direct experimental values, mean = 4.9 days). The mean DT50-value of IN-A2708 can thus be established to be <90 days. This is confirmed by the available DT50-values from two field studies (UK and NL), which were resp. 3.4 and 6.7 days.

Based on the above, the standards of persistence are met for oxamyl and its soil metabolites IN-A2213 and IN-D2708.

 

PECsoil

The concentration of the a.s. oxamyl in soil is needed to assess the risk for soil organisms (earthworms, micro-organisms). No PECsoil are estimated for the soil metabolites, since these are not needed in the ecotoxicological risk assessment (see chapter 7). The PECsoil for the application of Vydate10G is calculated for the upper 10 cm of soil (the granules are to be incorporated directly after application; 10 cm is used as a worst-case, a homogeneous distribution is assumed since the product is a very fine granulate), using a soil bulk density of 1500 kg/m3. The following input data are used for the calculation:

 

PEC soil:

 

Active substance:

Worst case lab/field DT50 for degradation in soil:  11.5 days

 

Molecular weight: 219.3 g/mol

 

 

See Table M.1 for other input values and results.

 

Table M.1 PECsoil calculations (10 cm)

No./Use

Substance

Rate

 

 

[kg a.s./ha]

Freq.

Fraction on soil

PIECsoil

10 cm

 

[mg a.s./kg]

PECsoil21 d, wet weight

10 cm

[mg a.s./kg]

Strawberry (propagation material) (F)

oxamyl

4

1

1

2.67

1.5

Tree nurseries (F)

oxamyl

4

1

1

2.67

1.5

Floriculture (F/G)

oxamyl

4

1

1

2.67

1.5

Flowers seed production (F) broadcast

oxamyl

4

1

1

2.67

1.5

Flowers seed production (F), in furrow

oxamyl

1 a)

1

1

2.67

1.5

Potted plants (F/G) b)

 

 

 

 

 

 

a) For the in-furrow use it is assumed that dose per ha means dose per treated area, and that the dose per surface area (in the furrow) is meant not to differ from the broadcast application dose. Therefore, PECsoil is the same as for the 4 kg a.s./ha uses.

b) No PECsoil is calculated for potted plants, since no field soil concentration is expected; see further text in ecotoxicological risk assessment

 

These exposure concentrations are examined against ecotoxicological threshold values in section 7.5.2.

 

6.1.2    Leaching to shallow groundwater

The leaching potential of the active substance (and metabolites) is calculated in the first tier using Pearl 2.2.2. and the FOCUS Kremsmünster scenario. Input variables are the actual worst-case application rate (4 kg a.s./ha), the crop (bare soil), application type (soil incorporation to 15 cm depth) and an interception value appropriate to the crop of 0. Date of yearly application is 25/05/1901 (default for spring application). The following input data are used for the calculation:

 

PEARL:

 

Active substance oxamyl:

Mean DT50 for degradation in soil (20°C):  6.6 days

Mean Kom (pH-independent): 10 L/kg

 

Saturated vapour pressure: 5.12 x 10-5 Pa at 25 °C

Solubility in water: 148.1 g/l at 20°C at pH 5.0 (for stability reasons)

Molecular weight: 219.3 g/mol

 

Other parameters: standard settings of PEARL 2.2.2

 

The following concentrations are predicted for the a.s. oxamyl following spring application of Vydate10G, see Table M.2a. For the use in potted plants (F/G) exposure of groundwater is limited, since the plant pots will be either placed on ‘tables’ or on plastic sheets. Any possible exposure to soil and leaching to groundwater that could occur if the plants are planted out in the field is considered to be covered by the concentrations calculated for the other uses, since a certain amount of degradation of oxamyl from the soil in the plant pots will have taken place in the time between the pot soil treatment and the planting in the field.

 

Table M.2(a) Leaching of a.s. oxamyl as predicted by PEARL 2.2.2 – lab DT50

No./ Use

Substance

Rate substance

Frequency

Fraction

intercepted

PEC

groundwater

 

 

[kg/ha]

 

 

spring

[mg/L]

Strawberry (propagation material) (F)

Oxamyl

IN-A2213

 

4

1

0

0.207

Tree nurseries (F)

 

4

1

0

0.207

Floriculture (F/G)

 

4

1

0

0.207

Flowers seed production (F) broadcast

 

4

1

0

0.207

Flowers seed production (F), in furrow (rij)

 

1

1

0

0.034

 

Results of Pearl 2.2.2. using the Kremsmünster scenario are examined against the standard of 0.01 µg/L. This is the standard of 0.1 µg/L with an additional safety factor of 10 for vulnerable groundwater protection areas (NL-specific situation).

 

From Table M.2(a) it reads that the expected leaching based on the PEARL-model calculations for the a.s. oxamyl is larger than 0.1 µg/L. Therefore, further study into the leaching behaviour is necessary.

 

In the previous risk assessment of Vydate10G (see C-138.3.3 / CTB decision 10-08-2003), it was concluded that the two field DT50-values for oxamyl were suitable for use as input parameter in the PEARL calculations. Therefore, new PEARL calculations are done for oxamyl, based on the mean field DT50 (standardised to 20°C) of 5.9 days (n=2) (see Table M.2b).

 

Table M.2(b) Leaching of a.s. oxamyl as predicted by PEARL 2.2.2 – field DT50

No./ Use

Substance

Rate substance

Frequency

Fraction

intercepted

PEC

groundwater

 

 

[kg/ha]

 

 

spring

[mg/L]

Strawberry (propagation material) (F)

Oxamyl

 

 

4

1

0

0.100

Tree nurseries (F)

 

4

1

0

0.100

Floriculture (F/G)

 

4

1

0

0.100

Flowers seed production (F) broadcast

 

4

1

0

0.100

Flowers seed production (F), in furrow

 

1

1

0

0.016

 

From Table M.2(b) it reads that the expected leaching based on the PEARL-model calculations for the a.s. oxamyl is equal to 0.1 µg/L for all uses except the in-furrow use in seed production. Therefore, further study into the leaching behaviour is necessary.

 

In the second tier, leaching in potential area of use is evaluated using the spatial distribution model GeoPEARL 1.1.1.

 

GeoPEARL

The leaching potential of substances to the shallow groundwater in the potential area of use within The Netherlands is calculated using the GeoPEARL model. The same input data as used in the first tier with Pearl 2.2.2. is employed. Additional input is the crop and the number of plots (minimum 250). For results see Table M.2c.

 

Table M.2c Leaching of a.s. oxamyl as predicted by GeoPEARL 1.1.1.

No./ Use

Substance

Rate a.s.

Frequency

Fraction

intercepted

PEC

groundwater

 

 

[kg/ha]

 

 

spring

[mg/L]

Strawberry (propagation material) (F)

oxamyl

4

1

0

0.0044

Tree nurseries (F)

oxamyl

4

1

0

0.0044

Floriculture (F/G)

oxamyl

4

1

0

0.011

Flowers seed production (F) broadcast

oxamyl

4

1

0

0.011

Flowers seed production (F), in furrow

oxamyl

1

1

0

0.011

 

GeoPEARL calculations show that the predicted leachate concentrations for oxamyl are smaller than 0.01 µg/L for the use in strawberry and tree nurseries. For the uses in floriculture and flowers seed production, the predicted concentration is larger than 0.01 µg/L, and a restriction on the use in groundwater protection areas should be placed on the label for these uses.

 

If the following restriction sentence is placed on the label, the active substance meets the standards for the proposed applications: 

 

‘Om het grondwater te beschermen mag dit product niet worden gebruikt in grondwaterbeschermingsgebieden.’

 

Metabolites IN-A2213 and IN-D2708

The metabolites have slightly lower KOM values than oxamyl, but  also slightly lower DT50-values. Further, the metabolites will have lower concentrations in the soil than the parent (max. formation fractions resp. 51% and 39.5%). Therefore, taking into account the small exceedance of the trigger value of 0.01 µg/L for the concentrations of oxamyl as calculated with GeoPEARL1.1.1., the risk of the metabolites is considered acceptable.

 

Lysimeter/field leaching studies

No suitable lysimeter studies available.

 

Monitoring data

Monitoring results from RIZA indicate that the a.s. substance oxamyl was detected at 5 occasions. None of the values measured were above the detection limit of 0.02 µg/L.

Further, monitoring data from the UK are available from the period 1992-1997, for which no elaborate evaluation was performed. The results indicate that oxamyl was detected on a few occasions in the UK.The detected values ranged from <0.025 – 0.541 µg/L. The application rate in the UK is higher than in the Netherlands (5.5 kg .a.s/ha vs 4 kg a.s./ha).

 

Regarding the presence of metabolites IN-A2213, IN-D2708 and IN-N0079 no monitoring data are available

 

The monitoring data give no reason to adjust the conclusions that were made based on the model calculations.

 

Conclusions

The proposed applications of the product Vydate 10G comply with the requirements concerning persistence and leaching in soil, if a restriction on the use in groundwater protection areas is placed on the label.

 

6.2       Fate and behaviour in water

Since Vydate10G is a granular formulation, no exposure of surface water is assumed to take place (no drift). Therefore, no PECsw are calculated.

 

Drinking water criterion

Based on the above, the application of oxamyl is not expected to exceed the drinking water criterion. The standards for surface water destined for the production of drinking water are met.

 

6.3       Fate and behaviour in air

 

Route and rate of degradation in air

The vapour pressure of a.s. oxamyl is 5.12 x 10-5 Pa at 25 °C. The Henry constant is 4.89 x 10-8 x Pa x m3 x mol-1 at 25 °C. The half-life in air is not available.

 

At present there is no framework to assess fate and behaviour in air of plant protection products.

 

6.4       Appropriate fate and behaviour endpoints relating to the product and approved uses